67553

ВОЛНОВАЯ ФУНКЦИЯ ЧАСТИЦЫ. УРАВНЕНИЕ ШРЕДИНГЕРА

Лекция

Физика

Здесь множитель i выделен для удобства (чтобы было = - см. ниже), а - некоторый дифференциальный оператор, не включающий производных по времени. Он должен быть линейным, чтобы соблюсти принцип суперпозиции.

Русский

2014-09-12

317.5 KB

2 чел.

Л Е К Ц И Я  3

ВОЛНОВАЯ ФУНКЦИЯ ЧАСТИЦЫ

УРАВНЕНИЕ ШРЕДИНГЕРА

Рассмотрим простой пример движения частицы. Пусть ее состояние таково, что координата частицы имеет определенное значение x. Это значит, что соответствующий вектор x есть собственный для оператора координаты :

 x = xx.

Разложим по всем таким состояниям произвольный вектор :

  = òdxxx,

где учтено, что из физических соображений спектр координаты - чисто непрерывный. Таким образом, вектор  задается континуальным множеством чисел

 x  (x),

т.е. фактически некоторой функцией (x) от x. Она называется волновой функцией частицы. Из нормированности вектора  имеем:

 1 =  = òdxRdxxx =

= òdxRdx (x-xR)x = òdx*(x)(x)dx = òdx(x)2,

т.е. волновая функция нормируется условием

 ò(x)2 dx = 1.

Волновая функция (x) -это координатная реализация вектора  состояния  из абстрактного гильбертова пространства квадратично интегрируемой функцией, т.е. вектором из функционального пространства L2. Если векторы 1 и 2 нормируемы, то их скалярное произведение теперь запишется как функциональное скалярное произведение:

 12 = òdx*1 (x)2 (x)

(доказательство такое же, как при получении условия нормировки).

Возьмем произвольный вектор , подействуем на него оператором  и введем обозначение

   .

Для волновой функции состояния  имеем:

 (x) = x  = x  (x,) = (x,) = 

= x (x,) = xyx.

Таким образом,

 (x) = x(x)  = x,

т.е. в координатной реализации оператор  есть просто оператор умножения на независимую переменную x. Для среднего значения координаты в состоянии имеем:

 xy =    12 = ò*1 (x)2 (x)dx =

= ò* (x)x(x)dx,

т.е.

 xy = òdxx(x)2.

Это выявляет физический смысл волновой функции - квадрат ее модуля (x)2 задает плотность вероятности обнаружить частицу в точке с координатой x. Результат ясен и из общей теории - из определения (x) как x и из вероятностной интерпретации x  (см. РЕЗЮМЕ). Можно сказать также, что (x) = x есть амплитуда вероятности перехода частицы из состояния в состояние x (см. постулат II).

Вообще говоря, волновая функция зависит не только от координаты, но и от времени. В фиксированный момент времени t0 функция (x,t0) однозначно определяет состояние . Очевидно из принципа причинности, что она должна определять и дальнейшую эволюцию системы, т.е. состояние  в произвольный момент времени t, т.е. волновую функцию (x,t). Поэтому волновая функция должна подчиняться некоторому дифференциальному уравнению первого порядка по времени, для однозначного отыскания решения которого как раз и достаточно задать (x,t0), (но не ее производные). Поэтому можно записать

.

Здесь множитель i выделен для удобства (чтобы было =  - см. ниже), а  - некоторый дифференциальный оператор, не включающий производных по времени. Он должен быть линейным, чтобы соблюсти принцип суперпозиции.

Докажем эрмитовость оператора . Имеем очевидное равенство

,

так как дифференцируется полная вероятность, т.е. 1. Вносим производную под знак интеграла и дифференцируем:

.

Подставляем производные   и  из уравнения и сопряженного ему:

 

, .

Получаем

0 = ò dx (y*+y - y*y),

т.е.

  y* ydx = ò+ydx      (y, y) = (y, y).

В силу произвольности y это и означает эрмитовость :

 = +.

Рассмотрим систему, на которую не действуют нестационарные внешние силы. Это значит, что оператор  не зависит от времени, и решение уравнения можно искать методом разделения переменных. Ищем частное решение в виде

 (x,t) = Q(t)(x)

и подставляем в уравнение

,

где w - константа разделения переменных, не зависящая от x и t. Для Q(t) сразу получаем решение

 Q (t) = const.e-iwt.

Значения же w находятся как собственные значения оператора :

 (x) = w(x).

Их может быть много, а значит, будет много и частных решений с разными w. Считая их спектр дискретным, запишем общее решение как

 (x,t) = n (x)

(коэффициенты линейной комбинации включаем в n (x)).

Разложим функции n (x) в интеграл Фурье и подставим в (x,t):

 (x,t) = òdk+ikx (k).

Вводя обозначения

 E  i,    p  ik,

получим:

 (x,t) = òdp,

где

.

Смысл E-энергия, p - импульс (см. волны де Бройля в лекции 1).

Теперь мы хотим извлечь отсюда явный вид операторов энергии и импульса. Для этого сделаем отступление. Пусть  - произвольный оператор, и n - его собственные функции. Разложим по ним произвольный вектор :

  = cnn 

и подействуем на него оператором:

  = cnAnn .

Характерный признак действия оператора на разложение: он «вышибает» из каждого слагаемого соответствующее свое собственное значение. Берем теперь найденное разложение для (x,t)и действуем на него оператором :

 (x,t) = òdpEn 

Так как «вышиблись» значения энергии En, то оператор энергии есть

 = .

Аналогично,

 (x,t) = òdpp,

а потому оператором импульса является

 = .

Возьмем теперь наше исходное уравнение и умножим его обе части на i:

  = i(x,t).

Слева стоит оператор энергии, а значит справа - оператор Гамильтона

 i = .

В итоге приходим к основному динамическому уравнению квантовой механики - к уравнению Шредингера

 = (x,t).

Мы рассмотрели одномерный случай. В трехмерном случае = (r,t), где r=(x, y, z). Общее решение уравнения Шредингера запишется как

 (r,t) = òdp.

Операторы

  =

есть операторы k-х компонентов импульса. Сам же оператор вектора импульса будет таким:

.

Чтобы записать в явном виде уравнение Шредингера, надо знать явный вид оператора Гамильтона . Он строится по принципу соответствия. Один из его аспектов гласит:

Если в классической механике некоторая динамическая величина есть функция каких-то других динамических величин, то при переходе к квантовой механике функциональная зависимость между величинами сохраняется.

Пример применения этого правила для написания оператора Гамильтона будет рассмотрен чуть ниже, а сейчас подведем некоторые итоги.

РЕЗЮМЕ

В квантовой механике волновая функция зависит от (обобщенных) координат q и времени t: = (q, t), и ее эволюция определяется уравнением Шредингера

 i = ,

где  - оператор Гамильтона. Это - реализация принципа причинности. Если внешние поля не зависят явно от времени, то частные решения имеют вид

  (q, t) =  Q(t) (q),

причем функции  и Q подчиняются уравнениям

 yE (q) = E yE (q), ii(t).

Первое из них есть уравнение на собственные значения оператора Гамильтона и называется стационарным уравнением Шредингера. Оно определяет энергетический спектр Е системы и собственные функции yE(q), т.е. функции состояний, в которых энергия имеет определенные значения E. Если найдены значения E, то можем решать второе уравнение:

 QE (t) = .

В результате получим набор состояний с волновыми функциями

 yE(q, t) = yE (q) ,

в которых энергия имеет определенные значения. Такие состояния называются стационарными. Они обобщают понятие боровских стационарных орбит. В стационарном состоянии плотность вероятности

 r (q, t) = yE (q, t) 2  =   yE (q) 2 ,

т.е. она не зависит от времени. Не зависят от времени и средние значения физических величин.

Рассмотрим теперь пример. Пусть частица движется во внешнем поле. В классической механике ее функция гамильтона есть

 H = .

В квантовой механике получим оператор Гамильтона

  =  =+V(r,t).

Уравнение Шредингера будет записываться как

 =  +(r,t).

Стационарное уравнение Шредингера имеет вид:

  yE (r) = Е yE (r)  +V(r) yE (r) = Е yE (r)

(здесь уже считается, что V не зависит от времени, иначе разделение переменных не возможно).

Запишем уравнение, сопряженное уравнению Шредингера (УШ):

  = +V(r)y* (r,t).

Умножая УШ слева на y*, а сопряженное УШ - слева на y и производя вычитание, получим:

  = (-)

  (.

Величина

 r (r,t) = |y(r,t) |2

есть плотность вероятности. Введем вектор

 j(r,t) = (y*y,

чтобы записать в компактной форме полученное соотношение:

 + div j = 0.

Это есть уравнение непрерывности. Оно выражает закон сохранения вероятности. Поскольку r - плотность вероятности, то j следует интерпретировать как плотность потока вероятности.

В стационарном случае, когда V = V(r) волновые функции стационарных состояний имеют вид

 y(r,t) =  yE (r),

где yE подчиняется уже выписанному стационарному уравнению Шредингера. Для плотности вероятности и плотности потока вероятности получаем не зависящие от времени величины:

 r = yE (r)2, j = .

FILENAME lecture03.doc

-  PAGE 18 -


 

А также другие работы, которые могут Вас заинтересовать

19833. Реляційна модель даних 15.18 KB
  Реляційна модель даних У реляційній моделі даних об'єкти і взаємозв'язки між ними представляються за допомогою таблиць. Взаємозв'язки також подаються як об'єкти. Кожна таблиця представляє один об'єкт і складається з рядків і стовпців. Таблиця повинна мати первинний ключ ...
19834. Источники права 14.7 KB
  Источники права Как и у других народов один из главных источников права у славян обычай. Обычаи или устойчивые правила поведения формируются уже на этапе догосударственного развития в условиях родоплеменных отношений. Возникновение Древнерусского государства ес
19835. Русская правда 16.61 KB
  Русская правда Русская Правда сохранилась в большом количестве свыше 110 списков XIIIXVIII вв. Все тексты Правды находятся в составе какихлибо сборников или летописей. По своим особенностям списки Правды могут быть разделены на три основных памятника: 1 Краткую 2 Прост
19836. Уголовное право по Русской правде 17.84 KB
  Уголовное право по Русской правде Уголовное право это основная часть судебника. Преступление Субъектами преступления были все физические лица включая холопов без возрастного ценза при наличии у них ясного сознания. Субъективная сторона преступления включала
19837. Суд и судопроизводство по Русской правде 21.69 KB
  Суд и судопроизводство по Русской правде Самостоятельных судебных органов нет суд производился представителями администрации. Высшей судебной инстанцией был великий князь. Князь поручал правосудие тиунам и своим отрокам. Чиновники которым надлежало решить у...
19838. Причины и предпосылки политической раздробленности 18.34 KB
  Причины и предпосылки политической раздробленности XII – XIII вв. После смерти князя Ярослава 1054 вся территория Киевской Руси была разделена между его сыновьями. Постоянный рост членов княжеских династий и дробление земельных наделов между ними сопровождались пост...
19839. Правовое положение населения по Русской правде 20.98 KB
  Правовое положение населения по Русской правде В Киевской Руси можно выделить 3 основных социальных класса. 1. Представители привилегированного слоя: Бояре советники старшие дружинники князя; Княжьи мужи лица исполняющие важнейшие поручения князя близкие к н...
19840. Гражданское право по Русской Правде 19.3 KB
  Гражданское право по Русской Правде Гражданское право – это вещное и семейное право. Разделов нет. Упоминается о праве собственности по отношению движимых вещей. Понятие недвижимости ещё нет земля принадлежит общине или всему роду боярскому родовая традиция.
19841. Регулирование вещного права по Псковской судной грамоте 24.49 KB
  Регулирование вещного права по Псковской судной грамоте Вещное право разделяло имущество на недвижимые отчина и движимые живот; различало наследственное вотчина и условное кормля землевладение. Большое внимание уделялось земле как объекту права собствен...