67554

А-ПРЕДСТАВЛЕНИЕ КВАНТОВОЙ МЕХАНИКИ

Лекция

Физика

Здесь предполагается, что спектр оператора - невырожденный. Если есть вырождение, то нужен еще один индекс, связанный с необходимостью введения по крайней мере еще одного оператора, коммутирующего с . Тогда строим базис из общих собственных векторов операторов и (см. лекцию 2):

Русский

2014-09-12

642 KB

0 чел.

Л Е К Ц И Я 4

АПРЕДСТАВЛЕНИЕ КВАНТОВОЙ МЕХАНИКИ

На прошлой лекции мы построили некую конкретную схему квантовой механики, взяв в качестве основного оператор координаты . Делалось это так. Ставим задачу на собственные значения оператора:

 x = xx

и получаем ортонормированный базис из его собственных векторов x:

 xx’ = d (x-xR),òdx xx = .

Разлагаем по этому базису произвольный вектор:

    = òdxx’ x

и характеризуем состояние  не вектором , а волновой функцией

 (x)  x.

Но можно взять не , а произвольный оператор :

 jAn = AnjAn

причем для определенности считаем спектр чисто дискретным:

 jAnjAm = dnm,  jAnjAn =.

Разлагаем произвольный вектор:

    = jAnjAn

и характеризуем состояние набором чисел (последовательностью)

 (An)  jAny,

которая имеет смысл волновой функции состояния  в - представлении.

Замечание. Здесь предполагается, что спектр оператора  - невырожденный.      Если есть вырождение, то нужен еще один индекс, связанный с необходимостью введения по крайней мере еще одного оператора , коммутирующего с . Тогда строим базис из общих собственных векторов операторов  и  (см. лекцию 2):

 jAnBm = AnjAnBm,   jAnBm = BmjAnBm;

 (An,Bm)   jAnBm.

Таким образом, в квантовой механике число степеней свободы можно ввести по определению как число независимых взаимно коммутирующих операторов ( число  операторов полного набора).

Итак, рассматриваем A-представление, в котором состояние  характеризуется последовательностью (« волновой функцией»)

 (An) = jAn.

Пусть имеется произвольный оператор , переводящий  в :

     = .

Состояние  характеризуется последовательностью

 (An) =  jAn .

Ясно, что отображение   индуцирует отображение

 (An)  (An), или (An) = (An),

 

где  есть оператор наблюдаемой F в Aпредставлении. Его легко можно найти в явном виде, для чего умножим равенство  =  слева на jAn  и воспользуемся разложением единицы :

 jAn = jAn  jAn =

= jAn j Am jAm,

Вводя обозначение

  jAn jAm   Fnm

и вводя волновые функции состояний и , получим

 (An) = Fnm(An).

Таким образом, в A-представлении наблюдаемая F представляется матрицей Fnm оператора .

Построим теперь другое - -представление:

 jRBn = Bn jRBn  ; jRBn jRBm = dnm,

где волновые функции записываются как

 yR(Bn) =  jRBn , (Bn) = jRBn,

и

(Bn) = yR (Bn), или (Bn) = ,  FRnm  jRBnjRBn.

Оператор (матрица FRnm) есть оператор (матрица) наблюдаемой F в B-представлении.

Свяжем величины в A- и B- представлениях. Для волновой функции, пользуясь разложением единицы, имеем

yR(Bn)  jRBn  =  jRBn jAmjAm = jRBnjAmyAm,

что можно записать как

 yR (B) = (B,A)(A),    ()

где (B,A) - некоторый оператор. Установим его основное свойство, для чего преобразуем выражение для скалярного квадрата вектора  :

  = (An)(An)((A),(A)) =

 =(Bn) yR (Bn)( yR (B), yR (B)) =

 = ((A),(A)) = ((A),(A)).

Таким образом,

  ((A),(A))  ((A),   (A)) = ((A),(A)),

откуда, в силу произвольности (A),

 = .

Видим, что оператор  является унитарным.

 

Замечание. Строго говоря, унитарным называется оператор, для которого

  =  = ,

что получается из  = , если у  есть обратный  оператор. Но нам достаточно свойства     = .

В математике такие операторы называются изометрическими.   

Посмотрим теперь на связь операторов  и  в A- и -представлениях. Они вводятся как (см. выше)

 (A) =(A)  и  (B) = yR (B).

Заменяем во втором равенстве yR на :

(A) = (A).

Умножаем слева на  и используем унитарность:

(A) = (A).

Сравнение с определением  дает

 =    = .      ().

Таким образом, переход от величин в A-представлении к величинам в B-представлении осуществляется с помощью формул () и () ,т.е. с помощью унитарного преобразования. Говорят также, что A- и B-представления унитарно эквивалентны. Покажем, что представления не только формально, но и физически эквивалентны. При унитарном преобразовании:

  1.  структура суперпозиционного состояния сохраняется:

 y = c11 + c2 2        yR = c1 yR 1 + c2 yR2;

  1.  скалярные произведения, а значит нормировки и вероятности переходов сохраняются:

(yR, jR) = (y, j) = (y, j) = (y, j) = (y,j);

3. линейные операторы переходят в линейные;

  1.  сумма операторов переходит в сумму:

 +  =  +  = ( + );

  1.  структура произведения оператора на число сохраняется:   

 = a = (a);

  1.  произведение операторов сохраняется:

 = ()() = (),

  1.  коммутатор операторов сохраняет структуру:

 =    = ,

что следует из свойств 4 и 5;

  1.  средние значения наблюдаемых сохраняются:

(yR, yR) = ( y, y) = ( y, y) = ( y, y);

  1.  спектральные свойства операторов сохраняются:

n = Fnn: yRn = n = n = Fnn = Fnyn = Fn yRn

Итак, разные квантовомеханические представления (A и B) эквивалентны не только математически, но и физически. Они дают два разных способа описания одной и той же физической схемы. Разные представления - разные реализации одного и того же гильбертова пространства и одной и той же алгебры операторов, действующих в нем. Аналогия - описание 3-мерного пространства в разных декартовых базисах. Поэтому A-представление иногда называется (и это лучше) A-базисом.

То, что мы рассматривали на прошлой лекции в качестве примера, есть, таким образом, координатное представление. Для одной частицы в трехмерном пространстве вектор состояния y записывается как

  = òdr cr  cr  òdry(r)cr,

и

 y(r)  cr

есть ее волновая функция (это напоминание). Подействуем на абстрактный вектор  оператором , разложим его по координатному базису и воспользуемся уже известным нам уравнением Шредингера:

  = òdr(r,t) cr = òdr(,t) cr .

Получим уравнение Шредингера в абстрактной картине

 (t) = (t),

где  - оператор Гамильтона в этой картине.

Продолжим рассмотрение координатного представления. Как мы видели в начале лекции 3, оператор координаты в своем «родном» представлении есть оператор умножения:

 (r) = r(r).

Найдем его собственные функции cr(r):

  cr(r) = r cr(r)rcr(r)       (-r) cr(r) = 0,

откуда видно, что cr(r) равна нулю при r¹r. Поэтому cr(r) должна быть некой линейной комбинацией d-функции и ее производных. Учитывая, что

 d (х) = 0, d (х) = - d(х),...

заключаем:

 cr(r) =Ad(r-r).

Константа A находится из условия нормировки:

d(r-rR) = (cr, crR) = UA2Uòd(r-r) d(r-rR)dr =UA2U(r-rR) UA2U=1 A=1.

Таким образом, окончательно

 cr(r) = d(r-r).

Ниже этот результат будет получен другим способом.

Найдем теперь собственные функции оператора импульса

 

(см. лекция 3) в координатном представлении:

 fp(r) = fp(r)  -iiÑ fp(r) = fp(r)  fp(r) = A.

Константа A определяется из условия нормировки:

d (p-pR) = (fp(r), fpR(r)) = òf*p(r)dr = UAU2òdr =

= UAU2òdr = UAU2i3 ò =

= UAU2(2i)3d (p-pR) A = (.

Таким образом, нормированные собственные функции оператора импульса имеют в координатном представлении следующий вид:

(fp(r) = (.

Перейдем теперь от координатного представления к импульсному, в котором волновая функция определяется как

 yR(p) = fpUy.

Для нее, используя разложение единицы в x -представлении, имеем:

 yR(p)  fpy = òdrfpcr cry = òdrcrfpcry =

= òdrf*p(r)y(r)  (fp(r), y(r)) = òdr( y(r).

Таким образом, волновые функции в импульсном и координатном представлениях связаны интегральным преобразованием Фурье (с точностью до i) :

 yR (p) = ( òy (r)dr 

и

 y (r) = (òyR (p)dp.

( Не путать штрих с символом дифференцирования функции!).

Оператор импульса в координатном и импульсным представлениях действует на «родные» волновые функции и имеет явно разный вид:

 j (r) = y (r), jR(p) = yR (p).

Чтобы связать  с =-iiÑ и тем самым найти вид , умножим первое уравнение скалярно на fp(r):

(fp(r),j (r))  jR(p) = (fp(r),y (r)),

откуда

 yR (p) = (fp(r),y (r)) = -ii(2òÑy (r)dr =

= -ii (2òÑy (r)dr + ii(2òÑy (r)dr =

= -ii(2i)3y (r)dS +ii(2 i)3(-ipiy (r)dr =

= 0 + 1(2 i)3pòy (r)dr=pyR (p).

Таким образом,

  yR (p) = p yR (p)  = p,

т.е. действие оператора импульса на волновую функцию сводится к умножению на независимую переменную. Легко показать, что это же справедливо и для любого оператора в его «родном» представлении (для координаты уже убедились).

Действуя аналогично, найдем оператор координаты в импульсном представлении:

  yR (p) = (fp(r),y (r)) = (òr y (r) dr

  ( iiÑpòy (r)dr = iiÑpyR (p).

Итак,

  yR (p) = iiÑpyR (p)     = iiÑp.

Видим, что координатное и импульсное представления связаны принципом взаимности. Волновые функции в них получаются друг из друга прямым или обратным преобразованием Фурье. Операторы координаты и импульса в «родных» представлениях - операторы умножения на независимые переменные. Операторы координаты и импульса в «чужих» представлениях - операторы дифференцирования (с точностью до множителя ii). Обращаем внимание на разные знаки у операторов   и  .

Уравнение на собственные значения оператора   в импульсном представлении лишь знаком отличается от уравнения для оператора  в координатном представлении:

 cRr(p) = rcRr(p) +iiÑp cRr(p) = rcRr(p).

Поэтому сразу можно выписать его собственные функции:

 cRr(p) = (.

Найдем собственные функции оператора в импульсном представлении:

 fRq (p) = qfRq (p).

Для левой части имеем:

fRq (p) = (fp (r),fq (r)) = 1(2i)3òdr(-iiÑr)=

= q(2i)3òdr= qd (p-q).

Сравнивая с верхним уравнением, получаем:

 fRq (p) = d (p-q).

Аналогично, путем перехода к импульсному представлению, можно решить и уравнение на собственные значения оператора  в координатном представлении:

  cr(r) = rcr(r)     r cr(r) = rcr(r).

В итоге получим уже известный нам результат:

 cr(r) = d(r-r).

Он очень естественен. По своему физическому смыслу собственная функция оператора координаты описывает состояние с определенным значением координаты. Это значит, что квадрат ее модуля (плотность вероятности) должен быть отличен от нуля лишь в одной точке. Но для дельта- функции так оно и есть . То же относится и к интерпретации собственных функций оператора   в импульсном представлении, где волновая функция (точнее, квадрат ее модуля) задает распределение значений импульса в данном состоянии.

FILENAME lecture04.doc

-  PAGE 25 -


 

А также другие работы, которые могут Вас заинтересовать

69200. Системи літака 574 KB
  У систему запуску входять: електростартер турбостартер або повітряний стартер що забезпечує первинне розкручування ротора АД; електромагнітні клапани і паливні насоси що забезпечують подачу палива в пускові і основні форсунки камери згоряння; запальні пристрої для займання...
69201. ЗАГАЛЬНІ ВІДОМОСТІ З АВІАЦІЙНОЇ ТЕХНІКИ І ПРО ДІЯЛЬНІСТЬ ФАХІВЦІВ НАПРЯМУ АВІОНІКА 15 MB
  Задачами вивчення навчальної дисципліни є: навчити студентів основам аеродинаміки і динаміки польоту ЛА конструкції ЛА авіаційного двигуна та їх систем; ознайомити з принципами роботи та складом типових систем авіаційної електроніки авіоніки; дати уявлення про організацію...
69202. ОСНОВИ АЕРОДИНАМІКИ ТА ДИНАМІКИ ПОЛЬОТУ 2.97 MB
  При обтіканні повітряним потоком різних тіл частин літальних апаратів виникають сили і моменти які залежать від форми літальних апаратів і впливають на їх льотнотехнічні характеристики. Аеродинаміка вивчає умови виникнення аеродинамічних сил тобто повітряних...
69203. Природа виникнення аеродинамічних сил. Принципи створення піднімальної сили 8.87 MB
  Картина обтікання крила літака потоком повітря показана на рис. Повна аеродинамічна сила крила: а картина обтікання крила літака потоком повітря; б схема створення повної аеродинамічної сили R.21 а наглядно видно що потік обтікає верхню і нижню частини профілю крила неоднаково.
69204. Основні закони руху повітря, що стискається. Загальні відомості про аеродинаміку великих швидкостей 3.81 MB
  Таким чином величина стиснення залежить від відношення швидкості потоку до швидкості звуку. Це відношення називається числом Маха і вважається критерієм стисливості потоку. Чим більше швидкість повітряного потоку швидкість польоту V і менше швидкість звуку...
69205. Хвильова криза. Поняття про критичне число Маха 8.3 MB
  Найменша швидкість дозвукового польоту при якій у якійнебудь точці крила швидкість потоку що обтікає крило стає рівної місцевої швидкості звуку називається критичною швидкістю польоту Vкр а відповідне їй число Маха польоту критичним Мкр.
69206. Основні види руху літального апарату. Горизонтальний політ літака 1.78 MB
  Основними видами руху які розглядаються в динаміці польоту є горизонтальний політ набір висоти зниження зліт посадка віраж та ін. При розрахунках льотних даних літака зручно користуватися графічними залежностями тяги від швидкості і висоти польоту.
69207. Зліт і посадка літака 6.06 MB
  Зліт і посадка є відповідно первинним і завершальним етапами польоту літака. При зльоті й при посадці змінюються швидкість і висота польоту тому рух літака в цих режимах є несталим. Зліт і посадка літака найбільш відповідальні етапи польоту що вимагають від льотчика граничної уваги і точності.
69208. ЛІТАК ТА ЙОГО СИСТЕМИ 1.62 MB
  Швидкісна система координатних осей ОXYZ використовується для вивчення аеродинамічних сил та при розв’язанні задач аеродинамічного розрахунку літака рис. Початок швидкісної системи координатних осей розміщено в центрі мас літака. Головною віссю є швидкісна вісь ОХа направлена по вектору швидкості літака.