67554

А-ПРЕДСТАВЛЕНИЕ КВАНТОВОЙ МЕХАНИКИ

Лекция

Физика

Здесь предполагается, что спектр оператора - невырожденный. Если есть вырождение, то нужен еще один индекс, связанный с необходимостью введения по крайней мере еще одного оператора, коммутирующего с . Тогда строим базис из общих собственных векторов операторов и (см. лекцию 2):

Русский

2014-09-12

642 KB

0 чел.

Л Е К Ц И Я 4

АПРЕДСТАВЛЕНИЕ КВАНТОВОЙ МЕХАНИКИ

На прошлой лекции мы построили некую конкретную схему квантовой механики, взяв в качестве основного оператор координаты . Делалось это так. Ставим задачу на собственные значения оператора:

 x = xx

и получаем ортонормированный базис из его собственных векторов x:

 xx’ = d (x-xR),òdx xx = .

Разлагаем по этому базису произвольный вектор:

    = òdxx’ x

и характеризуем состояние  не вектором , а волновой функцией

 (x)  x.

Но можно взять не , а произвольный оператор :

 jAn = AnjAn

причем для определенности считаем спектр чисто дискретным:

 jAnjAm = dnm,  jAnjAn =.

Разлагаем произвольный вектор:

    = jAnjAn

и характеризуем состояние набором чисел (последовательностью)

 (An)  jAny,

которая имеет смысл волновой функции состояния  в - представлении.

Замечание. Здесь предполагается, что спектр оператора  - невырожденный.      Если есть вырождение, то нужен еще один индекс, связанный с необходимостью введения по крайней мере еще одного оператора , коммутирующего с . Тогда строим базис из общих собственных векторов операторов  и  (см. лекцию 2):

 jAnBm = AnjAnBm,   jAnBm = BmjAnBm;

 (An,Bm)   jAnBm.

Таким образом, в квантовой механике число степеней свободы можно ввести по определению как число независимых взаимно коммутирующих операторов ( число  операторов полного набора).

Итак, рассматриваем A-представление, в котором состояние  характеризуется последовательностью (« волновой функцией»)

 (An) = jAn.

Пусть имеется произвольный оператор , переводящий  в :

     = .

Состояние  характеризуется последовательностью

 (An) =  jAn .

Ясно, что отображение   индуцирует отображение

 (An)  (An), или (An) = (An),

 

где  есть оператор наблюдаемой F в Aпредставлении. Его легко можно найти в явном виде, для чего умножим равенство  =  слева на jAn  и воспользуемся разложением единицы :

 jAn = jAn  jAn =

= jAn j Am jAm,

Вводя обозначение

  jAn jAm   Fnm

и вводя волновые функции состояний и , получим

 (An) = Fnm(An).

Таким образом, в A-представлении наблюдаемая F представляется матрицей Fnm оператора .

Построим теперь другое - -представление:

 jRBn = Bn jRBn  ; jRBn jRBm = dnm,

где волновые функции записываются как

 yR(Bn) =  jRBn , (Bn) = jRBn,

и

(Bn) = yR (Bn), или (Bn) = ,  FRnm  jRBnjRBn.

Оператор (матрица FRnm) есть оператор (матрица) наблюдаемой F в B-представлении.

Свяжем величины в A- и B- представлениях. Для волновой функции, пользуясь разложением единицы, имеем

yR(Bn)  jRBn  =  jRBn jAmjAm = jRBnjAmyAm,

что можно записать как

 yR (B) = (B,A)(A),    ()

где (B,A) - некоторый оператор. Установим его основное свойство, для чего преобразуем выражение для скалярного квадрата вектора  :

  = (An)(An)((A),(A)) =

 =(Bn) yR (Bn)( yR (B), yR (B)) =

 = ((A),(A)) = ((A),(A)).

Таким образом,

  ((A),(A))  ((A),   (A)) = ((A),(A)),

откуда, в силу произвольности (A),

 = .

Видим, что оператор  является унитарным.

 

Замечание. Строго говоря, унитарным называется оператор, для которого

  =  = ,

что получается из  = , если у  есть обратный  оператор. Но нам достаточно свойства     = .

В математике такие операторы называются изометрическими.   

Посмотрим теперь на связь операторов  и  в A- и -представлениях. Они вводятся как (см. выше)

 (A) =(A)  и  (B) = yR (B).

Заменяем во втором равенстве yR на :

(A) = (A).

Умножаем слева на  и используем унитарность:

(A) = (A).

Сравнение с определением  дает

 =    = .      ().

Таким образом, переход от величин в A-представлении к величинам в B-представлении осуществляется с помощью формул () и () ,т.е. с помощью унитарного преобразования. Говорят также, что A- и B-представления унитарно эквивалентны. Покажем, что представления не только формально, но и физически эквивалентны. При унитарном преобразовании:

  1.  структура суперпозиционного состояния сохраняется:

 y = c11 + c2 2        yR = c1 yR 1 + c2 yR2;

  1.  скалярные произведения, а значит нормировки и вероятности переходов сохраняются:

(yR, jR) = (y, j) = (y, j) = (y, j) = (y,j);

3. линейные операторы переходят в линейные;

  1.  сумма операторов переходит в сумму:

 +  =  +  = ( + );

  1.  структура произведения оператора на число сохраняется:   

 = a = (a);

  1.  произведение операторов сохраняется:

 = ()() = (),

  1.  коммутатор операторов сохраняет структуру:

 =    = ,

что следует из свойств 4 и 5;

  1.  средние значения наблюдаемых сохраняются:

(yR, yR) = ( y, y) = ( y, y) = ( y, y);

  1.  спектральные свойства операторов сохраняются:

n = Fnn: yRn = n = n = Fnn = Fnyn = Fn yRn

Итак, разные квантовомеханические представления (A и B) эквивалентны не только математически, но и физически. Они дают два разных способа описания одной и той же физической схемы. Разные представления - разные реализации одного и того же гильбертова пространства и одной и той же алгебры операторов, действующих в нем. Аналогия - описание 3-мерного пространства в разных декартовых базисах. Поэтому A-представление иногда называется (и это лучше) A-базисом.

То, что мы рассматривали на прошлой лекции в качестве примера, есть, таким образом, координатное представление. Для одной частицы в трехмерном пространстве вектор состояния y записывается как

  = òdr cr  cr  òdry(r)cr,

и

 y(r)  cr

есть ее волновая функция (это напоминание). Подействуем на абстрактный вектор  оператором , разложим его по координатному базису и воспользуемся уже известным нам уравнением Шредингера:

  = òdr(r,t) cr = òdr(,t) cr .

Получим уравнение Шредингера в абстрактной картине

 (t) = (t),

где  - оператор Гамильтона в этой картине.

Продолжим рассмотрение координатного представления. Как мы видели в начале лекции 3, оператор координаты в своем «родном» представлении есть оператор умножения:

 (r) = r(r).

Найдем его собственные функции cr(r):

  cr(r) = r cr(r)rcr(r)       (-r) cr(r) = 0,

откуда видно, что cr(r) равна нулю при r¹r. Поэтому cr(r) должна быть некой линейной комбинацией d-функции и ее производных. Учитывая, что

 d (х) = 0, d (х) = - d(х),...

заключаем:

 cr(r) =Ad(r-r).

Константа A находится из условия нормировки:

d(r-rR) = (cr, crR) = UA2Uòd(r-r) d(r-rR)dr =UA2U(r-rR) UA2U=1 A=1.

Таким образом, окончательно

 cr(r) = d(r-r).

Ниже этот результат будет получен другим способом.

Найдем теперь собственные функции оператора импульса

 

(см. лекция 3) в координатном представлении:

 fp(r) = fp(r)  -iiÑ fp(r) = fp(r)  fp(r) = A.

Константа A определяется из условия нормировки:

d (p-pR) = (fp(r), fpR(r)) = òf*p(r)dr = UAU2òdr =

= UAU2òdr = UAU2i3 ò =

= UAU2(2i)3d (p-pR) A = (.

Таким образом, нормированные собственные функции оператора импульса имеют в координатном представлении следующий вид:

(fp(r) = (.

Перейдем теперь от координатного представления к импульсному, в котором волновая функция определяется как

 yR(p) = fpUy.

Для нее, используя разложение единицы в x -представлении, имеем:

 yR(p)  fpy = òdrfpcr cry = òdrcrfpcry =

= òdrf*p(r)y(r)  (fp(r), y(r)) = òdr( y(r).

Таким образом, волновые функции в импульсном и координатном представлениях связаны интегральным преобразованием Фурье (с точностью до i) :

 yR (p) = ( òy (r)dr 

и

 y (r) = (òyR (p)dp.

( Не путать штрих с символом дифференцирования функции!).

Оператор импульса в координатном и импульсным представлениях действует на «родные» волновые функции и имеет явно разный вид:

 j (r) = y (r), jR(p) = yR (p).

Чтобы связать  с =-iiÑ и тем самым найти вид , умножим первое уравнение скалярно на fp(r):

(fp(r),j (r))  jR(p) = (fp(r),y (r)),

откуда

 yR (p) = (fp(r),y (r)) = -ii(2òÑy (r)dr =

= -ii (2òÑy (r)dr + ii(2òÑy (r)dr =

= -ii(2i)3y (r)dS +ii(2 i)3(-ipiy (r)dr =

= 0 + 1(2 i)3pòy (r)dr=pyR (p).

Таким образом,

  yR (p) = p yR (p)  = p,

т.е. действие оператора импульса на волновую функцию сводится к умножению на независимую переменную. Легко показать, что это же справедливо и для любого оператора в его «родном» представлении (для координаты уже убедились).

Действуя аналогично, найдем оператор координаты в импульсном представлении:

  yR (p) = (fp(r),y (r)) = (òr y (r) dr

  ( iiÑpòy (r)dr = iiÑpyR (p).

Итак,

  yR (p) = iiÑpyR (p)     = iiÑp.

Видим, что координатное и импульсное представления связаны принципом взаимности. Волновые функции в них получаются друг из друга прямым или обратным преобразованием Фурье. Операторы координаты и импульса в «родных» представлениях - операторы умножения на независимые переменные. Операторы координаты и импульса в «чужих» представлениях - операторы дифференцирования (с точностью до множителя ii). Обращаем внимание на разные знаки у операторов   и  .

Уравнение на собственные значения оператора   в импульсном представлении лишь знаком отличается от уравнения для оператора  в координатном представлении:

 cRr(p) = rcRr(p) +iiÑp cRr(p) = rcRr(p).

Поэтому сразу можно выписать его собственные функции:

 cRr(p) = (.

Найдем собственные функции оператора в импульсном представлении:

 fRq (p) = qfRq (p).

Для левой части имеем:

fRq (p) = (fp (r),fq (r)) = 1(2i)3òdr(-iiÑr)=

= q(2i)3òdr= qd (p-q).

Сравнивая с верхним уравнением, получаем:

 fRq (p) = d (p-q).

Аналогично, путем перехода к импульсному представлению, можно решить и уравнение на собственные значения оператора  в координатном представлении:

  cr(r) = rcr(r)     r cr(r) = rcr(r).

В итоге получим уже известный нам результат:

 cr(r) = d(r-r).

Он очень естественен. По своему физическому смыслу собственная функция оператора координаты описывает состояние с определенным значением координаты. Это значит, что квадрат ее модуля (плотность вероятности) должен быть отличен от нуля лишь в одной точке. Но для дельта- функции так оно и есть . То же относится и к интерпретации собственных функций оператора   в импульсном представлении, где волновая функция (точнее, квадрат ее модуля) задает распределение значений импульса в данном состоянии.

FILENAME lecture04.doc

-  PAGE 25 -


 

А также другие работы, которые могут Вас заинтересовать

27768. Педология 15.29 KB
  Несмотря на имевшиеся недостатки переоценивание роли биологических или социальных факторов в формировании ребенка использование технократических методов исследования отсутствие должного взаимодействия с другими науками педология внесла неоценимый вклад в развитие социальной педагогики. постановлением О педологических извращениях в системе Наркомпросов педология была объявлена лженаукой а педологи лжеучеными мракобесами и даже фашистскими прихвостнями и изгнаны из школы на них обрушились репрессии [4].
27769. Человек как жертва процесса социализации 17.19 KB
  Человек не только объект и субъект социализации. Это связано с тем что процесс и результат социализации заключают в себе внутреннее противоречие. Таким образом можно констатировать что в процессе социализации заложен внутренний до конца не разрешимый конфликт между степенью адаптации человека в обществе и степенью обособления его в обществе.
27770. Песталоцци 18.14 KB
  Передовая студенческая молодежь к которой принадлежал Песталоцци организовала кружок патриотов находившийся под влиянием идей французских просветителей и в первую очередь Руссо. Цюрихские власти подвергли кратковременному аресту нескольких активных членов кружка в том числе и Песталоцци. Выйдя из тюрьмы Песталоцци не завершив своего образования поселился в деревне в имении Нейгоф чтобы организовать образцовое сельское хозяйство которое могло бы наглядно показать крестьянам как улучшить свое положение. Но этот утопический...
27771. Социальный педагог 16.1 KB
  Социальный педагог осуществляет социальнопедагогическую деятельность со всеми категориями населения: с детьми подростками молодежью взрослыми. Социальный педагог является связующим звеном между клиентом и его окружением посредником в системе взаимодействия личности семьи общества. или специализированных учреждениях отделение социальной помощи детский дом центр реабилитации социальный приют медикопсихологическая консультация телефон доверия центр занятости и трудоустройства и т.
27772. Планирования работы с неблагополучными семьями 18.87 KB
  Программа работы варьируется в связи с изменившимися условиями но обязательно заслушивается на заседании общественной инспекции по делам несовершеннолетних при администрации поселка или комиссии по делам несовершеннолетних и защите их прав о выполнении данной программы. Поэтому социальный педагог должен взаимодействовать с учителями классными руководителями семьей и ребенком приложить все усилия для результативной работы. Одна из форм работы социального педагога с семьей социальный патронаж представляющая собой посещение семьи на дому с...
27773. Педагогическая деятельность Л. Н. Толстого 25.96 KB
  Толстой вступил как он сам писал об этом позже в период трехлетнего страстного увлечения этим делом. Толстой считал что наступило время вспомним что тогда Россия переживала период первой революционной ситуации и подъема общественнопедагогического движения когда образованные люди страны должны активно помогать народным массам испытывавшим огромную потребность в образовании удовлетворить это их законное стремление не доверяя столь важного дела царской власти. Толстой систематически освещал в своем педагогическом журнале Ясная...
27774. Социализирующие функции семьи 26.46 KB
  На всех этапах социализации образовательный уровень семьи интересы ее членов сказываются на интеллектуальном развитии человека на том какие пласты культуры он усваивает на стремлении к продолжению образования и к самообразованию. Вчетвертых семья имеет важное значение в овладении человеком социальными нормами а когда речь идет о нормах определяющих исполнение им семейных ролей влияние семьи становится кардинальным. Ценности и атмосфера семьи определяют и то насколько она становится средой саморазвития и ареной самореализации ее...
27775. СПЕЦИФИКА РАБОТЫ СОЦИАЛЬНОГО ПЕДАГОГА В ЛЕТНИХ ОЗДОРОВИТЕЛЬНЫХ ЛАГЕРЯХ 20.36 KB
  Социальный педагог находясь среди детей в летнем лагере чувствуя их настроение зная их проблемы реально оценивая возможности личности устанавливает доброжелательные гуманистические отношения устраняет дефицит общения. При этом специалист оценивает влияние микросреды детского лагеря окружения детей групп сверстников объединений подростков. Все это педагоги связывают с деятельностью детей на практике и включают в работу лагерной смены. Таким образом у детей формируется эмоциональноценностное отношение к миру и человеческой...
27776. Классификация методов обучения 15.12 KB
  По источникам передачи и характеру восприятия информации система традиционных методов Е. По характеру взаимной деятельности учителя и учащихся система методов обучения И. По основным компонентам деятельности учителя система методов Ю.