67554

А-ПРЕДСТАВЛЕНИЕ КВАНТОВОЙ МЕХАНИКИ

Лекция

Физика

Здесь предполагается, что спектр оператора - невырожденный. Если есть вырождение, то нужен еще один индекс, связанный с необходимостью введения по крайней мере еще одного оператора, коммутирующего с . Тогда строим базис из общих собственных векторов операторов и (см. лекцию 2):

Русский

2014-09-12

642 KB

0 чел.

Л Е К Ц И Я 4

АПРЕДСТАВЛЕНИЕ КВАНТОВОЙ МЕХАНИКИ

На прошлой лекции мы построили некую конкретную схему квантовой механики, взяв в качестве основного оператор координаты . Делалось это так. Ставим задачу на собственные значения оператора:

 x = xx

и получаем ортонормированный базис из его собственных векторов x:

 xx’ = d (x-xR),òdx xx = .

Разлагаем по этому базису произвольный вектор:

    = òdxx’ x

и характеризуем состояние  не вектором , а волновой функцией

 (x)  x.

Но можно взять не , а произвольный оператор :

 jAn = AnjAn

причем для определенности считаем спектр чисто дискретным:

 jAnjAm = dnm,  jAnjAn =.

Разлагаем произвольный вектор:

    = jAnjAn

и характеризуем состояние набором чисел (последовательностью)

 (An)  jAny,

которая имеет смысл волновой функции состояния  в - представлении.

Замечание. Здесь предполагается, что спектр оператора  - невырожденный.      Если есть вырождение, то нужен еще один индекс, связанный с необходимостью введения по крайней мере еще одного оператора , коммутирующего с . Тогда строим базис из общих собственных векторов операторов  и  (см. лекцию 2):

 jAnBm = AnjAnBm,   jAnBm = BmjAnBm;

 (An,Bm)   jAnBm.

Таким образом, в квантовой механике число степеней свободы можно ввести по определению как число независимых взаимно коммутирующих операторов ( число  операторов полного набора).

Итак, рассматриваем A-представление, в котором состояние  характеризуется последовательностью (« волновой функцией»)

 (An) = jAn.

Пусть имеется произвольный оператор , переводящий  в :

     = .

Состояние  характеризуется последовательностью

 (An) =  jAn .

Ясно, что отображение   индуцирует отображение

 (An)  (An), или (An) = (An),

 

где  есть оператор наблюдаемой F в Aпредставлении. Его легко можно найти в явном виде, для чего умножим равенство  =  слева на jAn  и воспользуемся разложением единицы :

 jAn = jAn  jAn =

= jAn j Am jAm,

Вводя обозначение

  jAn jAm   Fnm

и вводя волновые функции состояний и , получим

 (An) = Fnm(An).

Таким образом, в A-представлении наблюдаемая F представляется матрицей Fnm оператора .

Построим теперь другое - -представление:

 jRBn = Bn jRBn  ; jRBn jRBm = dnm,

где волновые функции записываются как

 yR(Bn) =  jRBn , (Bn) = jRBn,

и

(Bn) = yR (Bn), или (Bn) = ,  FRnm  jRBnjRBn.

Оператор (матрица FRnm) есть оператор (матрица) наблюдаемой F в B-представлении.

Свяжем величины в A- и B- представлениях. Для волновой функции, пользуясь разложением единицы, имеем

yR(Bn)  jRBn  =  jRBn jAmjAm = jRBnjAmyAm,

что можно записать как

 yR (B) = (B,A)(A),    ()

где (B,A) - некоторый оператор. Установим его основное свойство, для чего преобразуем выражение для скалярного квадрата вектора  :

  = (An)(An)((A),(A)) =

 =(Bn) yR (Bn)( yR (B), yR (B)) =

 = ((A),(A)) = ((A),(A)).

Таким образом,

  ((A),(A))  ((A),   (A)) = ((A),(A)),

откуда, в силу произвольности (A),

 = .

Видим, что оператор  является унитарным.

 

Замечание. Строго говоря, унитарным называется оператор, для которого

  =  = ,

что получается из  = , если у  есть обратный  оператор. Но нам достаточно свойства     = .

В математике такие операторы называются изометрическими.   

Посмотрим теперь на связь операторов  и  в A- и -представлениях. Они вводятся как (см. выше)

 (A) =(A)  и  (B) = yR (B).

Заменяем во втором равенстве yR на :

(A) = (A).

Умножаем слева на  и используем унитарность:

(A) = (A).

Сравнение с определением  дает

 =    = .      ().

Таким образом, переход от величин в A-представлении к величинам в B-представлении осуществляется с помощью формул () и () ,т.е. с помощью унитарного преобразования. Говорят также, что A- и B-представления унитарно эквивалентны. Покажем, что представления не только формально, но и физически эквивалентны. При унитарном преобразовании:

  1.  структура суперпозиционного состояния сохраняется:

 y = c11 + c2 2        yR = c1 yR 1 + c2 yR2;

  1.  скалярные произведения, а значит нормировки и вероятности переходов сохраняются:

(yR, jR) = (y, j) = (y, j) = (y, j) = (y,j);

3. линейные операторы переходят в линейные;

  1.  сумма операторов переходит в сумму:

 +  =  +  = ( + );

  1.  структура произведения оператора на число сохраняется:   

 = a = (a);

  1.  произведение операторов сохраняется:

 = ()() = (),

  1.  коммутатор операторов сохраняет структуру:

 =    = ,

что следует из свойств 4 и 5;

  1.  средние значения наблюдаемых сохраняются:

(yR, yR) = ( y, y) = ( y, y) = ( y, y);

  1.  спектральные свойства операторов сохраняются:

n = Fnn: yRn = n = n = Fnn = Fnyn = Fn yRn

Итак, разные квантовомеханические представления (A и B) эквивалентны не только математически, но и физически. Они дают два разных способа описания одной и той же физической схемы. Разные представления - разные реализации одного и того же гильбертова пространства и одной и той же алгебры операторов, действующих в нем. Аналогия - описание 3-мерного пространства в разных декартовых базисах. Поэтому A-представление иногда называется (и это лучше) A-базисом.

То, что мы рассматривали на прошлой лекции в качестве примера, есть, таким образом, координатное представление. Для одной частицы в трехмерном пространстве вектор состояния y записывается как

  = òdr cr  cr  òdry(r)cr,

и

 y(r)  cr

есть ее волновая функция (это напоминание). Подействуем на абстрактный вектор  оператором , разложим его по координатному базису и воспользуемся уже известным нам уравнением Шредингера:

  = òdr(r,t) cr = òdr(,t) cr .

Получим уравнение Шредингера в абстрактной картине

 (t) = (t),

где  - оператор Гамильтона в этой картине.

Продолжим рассмотрение координатного представления. Как мы видели в начале лекции 3, оператор координаты в своем «родном» представлении есть оператор умножения:

 (r) = r(r).

Найдем его собственные функции cr(r):

  cr(r) = r cr(r)rcr(r)       (-r) cr(r) = 0,

откуда видно, что cr(r) равна нулю при r¹r. Поэтому cr(r) должна быть некой линейной комбинацией d-функции и ее производных. Учитывая, что

 d (х) = 0, d (х) = - d(х),...

заключаем:

 cr(r) =Ad(r-r).

Константа A находится из условия нормировки:

d(r-rR) = (cr, crR) = UA2Uòd(r-r) d(r-rR)dr =UA2U(r-rR) UA2U=1 A=1.

Таким образом, окончательно

 cr(r) = d(r-r).

Ниже этот результат будет получен другим способом.

Найдем теперь собственные функции оператора импульса

 

(см. лекция 3) в координатном представлении:

 fp(r) = fp(r)  -iiÑ fp(r) = fp(r)  fp(r) = A.

Константа A определяется из условия нормировки:

d (p-pR) = (fp(r), fpR(r)) = òf*p(r)dr = UAU2òdr =

= UAU2òdr = UAU2i3 ò =

= UAU2(2i)3d (p-pR) A = (.

Таким образом, нормированные собственные функции оператора импульса имеют в координатном представлении следующий вид:

(fp(r) = (.

Перейдем теперь от координатного представления к импульсному, в котором волновая функция определяется как

 yR(p) = fpUy.

Для нее, используя разложение единицы в x -представлении, имеем:

 yR(p)  fpy = òdrfpcr cry = òdrcrfpcry =

= òdrf*p(r)y(r)  (fp(r), y(r)) = òdr( y(r).

Таким образом, волновые функции в импульсном и координатном представлениях связаны интегральным преобразованием Фурье (с точностью до i) :

 yR (p) = ( òy (r)dr 

и

 y (r) = (òyR (p)dp.

( Не путать штрих с символом дифференцирования функции!).

Оператор импульса в координатном и импульсным представлениях действует на «родные» волновые функции и имеет явно разный вид:

 j (r) = y (r), jR(p) = yR (p).

Чтобы связать  с =-iiÑ и тем самым найти вид , умножим первое уравнение скалярно на fp(r):

(fp(r),j (r))  jR(p) = (fp(r),y (r)),

откуда

 yR (p) = (fp(r),y (r)) = -ii(2òÑy (r)dr =

= -ii (2òÑy (r)dr + ii(2òÑy (r)dr =

= -ii(2i)3y (r)dS +ii(2 i)3(-ipiy (r)dr =

= 0 + 1(2 i)3pòy (r)dr=pyR (p).

Таким образом,

  yR (p) = p yR (p)  = p,

т.е. действие оператора импульса на волновую функцию сводится к умножению на независимую переменную. Легко показать, что это же справедливо и для любого оператора в его «родном» представлении (для координаты уже убедились).

Действуя аналогично, найдем оператор координаты в импульсном представлении:

  yR (p) = (fp(r),y (r)) = (òr y (r) dr

  ( iiÑpòy (r)dr = iiÑpyR (p).

Итак,

  yR (p) = iiÑpyR (p)     = iiÑp.

Видим, что координатное и импульсное представления связаны принципом взаимности. Волновые функции в них получаются друг из друга прямым или обратным преобразованием Фурье. Операторы координаты и импульса в «родных» представлениях - операторы умножения на независимые переменные. Операторы координаты и импульса в «чужих» представлениях - операторы дифференцирования (с точностью до множителя ii). Обращаем внимание на разные знаки у операторов   и  .

Уравнение на собственные значения оператора   в импульсном представлении лишь знаком отличается от уравнения для оператора  в координатном представлении:

 cRr(p) = rcRr(p) +iiÑp cRr(p) = rcRr(p).

Поэтому сразу можно выписать его собственные функции:

 cRr(p) = (.

Найдем собственные функции оператора в импульсном представлении:

 fRq (p) = qfRq (p).

Для левой части имеем:

fRq (p) = (fp (r),fq (r)) = 1(2i)3òdr(-iiÑr)=

= q(2i)3òdr= qd (p-q).

Сравнивая с верхним уравнением, получаем:

 fRq (p) = d (p-q).

Аналогично, путем перехода к импульсному представлению, можно решить и уравнение на собственные значения оператора  в координатном представлении:

  cr(r) = rcr(r)     r cr(r) = rcr(r).

В итоге получим уже известный нам результат:

 cr(r) = d(r-r).

Он очень естественен. По своему физическому смыслу собственная функция оператора координаты описывает состояние с определенным значением координаты. Это значит, что квадрат ее модуля (плотность вероятности) должен быть отличен от нуля лишь в одной точке. Но для дельта- функции так оно и есть . То же относится и к интерпретации собственных функций оператора   в импульсном представлении, где волновая функция (точнее, квадрат ее модуля) задает распределение значений импульса в данном состоянии.

FILENAME lecture04.doc

-  PAGE 25 -


 

А также другие работы, которые могут Вас заинтересовать

73143. Экспериментально изучить природу оптических спектров щелочных и щелочноземельных солей 55 KB
  Они состоят из ограниченного числа спектральных линий каждая из которых характеризуется определенной длиной волны. Для щелочных и щелочноземельных металлов длина излучаемых электронами электромагнитных волн находится в пределах длин волн видимого света.
73144. Расчет высоконапорных водоводов 33.75 KB
  Цель: Определение диаметров высоконапорных трубопроводов и давлений на кустах. Справочная информация: Давление, развиваемое на КНС – 19 МПа. Потери давления в высоконапорных водоводах составляют не более 3-5% от рабочего давления (согласно ВНТП 3-85).
73145. Страхова організація (компанія) 400 KB
  Страховий ринок - це сфера економічних відносин, у процесі яких формуються попит і пропозиція на страхові послуги та здійснюється акт їх купівлі-продажу. Страхова діяльність належить до найприбутковіших видів світового бізнесу.
73146. ТРИГГЕРЫ 466.5 KB
  Триггер – это устройство последовательностного типа с двумя устойчивыми состояниями равновесия, предназначенное для записи и хранения информации. Под действием входных сигналов триггер может переключаться из одного устойчивого состояния в другое.
73149. Робота з базами даних (списками) в MS Excel. Використання розширеного фільтра 161 KB
  Мета: робота з базами даних (списками) в Excel (створення списків і внесення в них змін, сортування та відбір даних з використанням розширеного фільтра). Відкрийте файл з таблицями до лабораторної роботи. Виведіть рядки, що містять дані про товари, виготовлені зарубіжним виробником...
73150. Дослідження розподілу випадкових величин. Визначення прискорення вільного падіння (за допомогою математичного маятника) 115.9 KB
  Мета роботи: ознайомитися з методом визначення прискорення вільного падіння за допомогою математичного маятника та дослідити особливості розподілу випадкових величин. За допомогою математичного маятника експериментально визначити прискорення вільного падіння біля поверхні Землі.