67555

СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ

Лекция

Физика

Зависимость от времени можно ввести в квантовую механику разными способами. До сих пор мы пользовались картиной Шредингера в которой считается что всю зависимость от времени несут векторы состояния волновые функции а в операторы наблюдаемых она может входить лишь в исключительных...

Русский

2014-09-12

611.5 KB

0 чел.

Л Е К Ц И Я  5

СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ

В координатном представлении

 = r,   = iiÑ.

Коммутаторы этих операторов таковы :

 = iidkl

Очевидно, что коммутатор оператора координаты с «чужим» компонентом импульса (скажем,  с ) равен нулю. Проверим, что

 = ii (  и , аналогично ).

Имеем:

 y(x) = y- y = x +ii(xy) =

 

 = ii x+ ii x+ ii y = ii  y,

откуда в силу произвольности y и получаем, что надо.

Итак, коммутатор координаты со «своим» импульсом отличен от нуля. Это накладывает ограничения на дисперсии координаты и импульса в заданном состоянии, называемые соотношениями неопределенностей. Проведем общее рассмотрение для наблюдаемых A и B, записывая

 = i,

где . Операторы  и  эрмитовы, и множитель i введен для того, чтобы оператор  был также эрмитовым (сам коммутатор антиэрмитов). Введем операторы уклонения от среднего значения в заданном состоянии:

  ,   .

Они эрмитовы и удовлетворяют тому же коммутационному соотношению:

 = i.

Дисперсией наблюдаемой A (аналогично B) в состоянии y  называется

 Dy(A) (DA)2 .

Задача - получить ограничения на дисперсии наблюдаемых A и B.

Образуем скалярное произведение (D,D) и найдем его мнимую часть:

Im(Dy, Dy) = 1/2i (Dy, D y) - (Dy, Dy)* =

= 1/2i( D y, D y)-( Dy, D y) =

= 1/2i( y, DD y)-( y, DD y) =

= 1/2i (y, y) = 1/2i(y, y) = 1/2C.

Учтем теперь, что модуль мнимой части не больше модуля самого числа, а затем воспользуемся неравенством Коши - Буняковского:

Im(Dy, Dy)   (Dy, Dy)  =

=  = (DA)(DB).

Сравнивая с предыдущим, мы и приходим к общему соотношению неопределенностей:

 DADВ l 1/2UCU.

В частности, для координаты и импульса  = i, а потому C = i, и получаем соотношение неопределенностей Гейзенберга:

 DxDpx l i/2.

Ни в одном состоянии дисперсии координаты и импульса не могут обе быть нулями. Значит x и px совместно неизмеримы.

МАТРИЧНОЕ ПРЕДСТАВЛЕНИЕ

Возьмем какой-то эрмитов оператор  и поставим задачу на собственные значения:

 n = Ann.

Допустим, что спектр - чисто дискретный. Это значит, что собственные векторы образуют ортонормированный базис:

(jn, jm) = dnm  Û  jnjm = dnm,

 jnjn = .

Любой вектор y можно разложить по этому базису:

 y = ynjn,

где дискретная последовательность коэффициентов Фурье

 yn = jny

будет однозначно задавать состояние y. Расположим числа yn в матрицу - столбец:

 y = .

Она и представляет вектор состояния y. Образуем эрмитово сопряженную матрицу, которая будет матрицей - строкой с компонентами

= jn y* = yjn = y*n.

Она будет представлять совектор y :

 y= (y*1, y*2,...).

С использованием условия полноты jnjn =  скалярный квадрат запишется как

 y y  = y  jn jny = yn2 .

Если вектор y  нормирован, т.е. y y =1, то сумма также равна 1, т.е. ряд сходится.

Рассмотрим теперь некоторый оператор ,который действуя на y  переводит его в :

 = y .

Умножая скалярно на  jn и пользуясь условием полноты, найдем:

  jn y  =  jn y  =  jn jm jm y ,

или

 =Fnmym,

где введена матрица оператора:

 Fnm   jn jm.

Оператор  переводит y в , а матрица Fnm переводит компоненты  yn вектора y в компоненты  вектора . Если оператор эрмитов, то и его матрица эрмитова:

 Fnm = (Fmn)*.

Среднее значение оператора  в состоянии y теперь вычисляется так:

F =  = ,

т.е.

 F = Fnm y*n ym.

Рассмотрим теперь другое представление, порожденное оператором :

  jR n = Bn jR n,  jR n jR m = dnm,  jR n jR n = .

Векторы y в нем представляются другими волновыми функциями:

 yRn =  jR n y,

а операторы  - другими матрицами:

.

Но так как оба базиса - ортонормированные, то волновые функции и матрицы операторов в обоих представлениях связаны унитарным преобразованием:

 yRn = Unmym, FRnm = UnnRFnRmRU+mRm.

Раньше мы формулировали эти утверждения на языке операторов.

Найдем шпур (след) матрицы оператора  в B -представлении:

 

= ,      (U+U = ),

т.е. шпур матрицы инвариантен относительно унитарного преобразования - не зависит от выбора представления.

Задача на собственные значения оператора

 y = Fy

в матричном A-представлении ставится как

(Fnm-Fdnm)ym = 0.

Система однородных линейных уравнений для определения ym имеет нетривиальные решения при условии

det CFnm-FdnmC = 0

Это вековое или характеристическое уравнение является алгебраическим. Его решения F1,F2,...Fk... есть искомые собственные значения. Подставляя каждое из них в систему уравнений, найдем последовательности

 F1:                     y(1)1, y(1)2,... y(1)n,.....

 F2:                              y(2)1, y(2)2,... y(2)n...

                  ..............................................................

представляющие собственные векторы y(n), т.е. являющиеся их волновыми функциями.

Если в качестве базисных векторов выбрать собственные векторы  yn  оператора , то его матрица будет диагональной:

 Fnm = yn ym  = yn Fmym  = Fm yn ym  = Fmdnm

Таким образом, решение задачи на собственные значения оператора  равнозначна диагонализации его матрицы: находимUyn, устанавливаем унитарное преобразование, связывающее Uyn с Ujn, и совершаем это унитарное преобразование над исходной матрицей Fnm. В результате и получим диагональную матрицу.

Все те же операции можно проделать и в случае, когда спектр оператора  - непрерывный, но все надо понимать в обобщенном смысле. Базис образуют обобщенные собственные векторы:

 A = AA, AB = d(A-B),    òdAAA = .

Волновая функция

 y ()= Ay

есть «настоящая» функция, ибо зависит от непрерывного аргумента. Если оператор  переводит вектор y в , т.е.

 = y,

то для волновых функций имеем:

(A)  A = Ay = òAAR ARy,

т.е.

(A) = òF(A,AR)y(AR)dAR,

где

 F(A,AR)  AAR

ядро интегрального оператора .

Для произведения двух операторов

 

 

получим

 F1(A,AR) = A23 AR = A2ARR ARR3AR dARR,

т.е. ядро произведения получается как свертка операторов-сомножителей:

 F(A,AR) = ò F(A, ARR) F(ARR,AR)dARR.

- . .- . - . - .

Рассмотрим уравнение Шредингера

 iiy = y,

которое для одной частицы во внешнем поле записывается как

 iiy = y +V(r)y.

В координатном представлении мы его уже получали:

 iiy(r,t) = -i2/2m Ñ2 y(r,t) + (r) y(r,t).

Найдем теперь уравнение Шредингера в импульсном представлении. Нам нужно найти действие оператора , т.е.  =  и V(r) на волновую функцию (p), которая есть

 (p) = ácpy.

Для ядра оператора V имеем

 W(p,pR) = ácpcpR = (cp(r),V(r) cpR (r)),

где cp(r) - собственные функции оператора импульса в координатном представлении:

 cp(r) = .

Подстановка дает:

W(p,pR) = ,

т.е. ядро W получается из V путем преобразования Фурье:

W(p,pR) = .

Для оператора кинетической энергии  имеем:

K(p,pR) =  i2/2m(cp(r),Ñ2cp(rR)) =  i2/2m=

=  i2/2m  = p2/2md(p-pR):

                  K(p,pR) = p2/2md(p-pR).

Подставляем все это в уравнение Шредингера в импульсном представлении:

ii.

Получаем:

 ii ,

т.е.

 ii ,

где

 W(p,pR) = .

В итоге получилось интегро-дифференциальное уравнение.

Если V(r)есть полином от r2,т.е. включает сумму членов вида

 Vn = anr2n,

то eсть уравнение Шредингера сводится к дифференциальному. Действительно, в этом случае

Wn(p,pR) = =

= an (-i2Ñ2p )n = an(-i2Ñ2p )nd(p-pR);

ò Wn(p,pR) (pR,t)dpR = an(-i2Ñ2p )nò d(p-pR) (pR,t)dp = an (-i2Ñ2p )n(p,t);

ii(p,t) = (p2 /2m +an(-i2Ñ2p )n) (p,t).

Важный пример - изотропный гармонический осциллятор, с

 V(r)= (2  k/m).

В координатном представлении уравнение Шредингера записывается как

 iiy(r,t) = -i2/2mÑ2 y(r,t) + (m w2 r2/2)y(r,t).

В импульсном представлении, учитывая, что n = 1 и a = mw22, имеем:

 ii(p,t) = p2/2m(p,t) - i2mw22Ñ2(p,t)

Уравнения с точностью до переобозначения констант идентичны, а значит идентичны и их решения. Но они, как функции в координатном и импульсном представлениях, должны быть связаны преобразованием Фурье. Поэтому, если не обращать внимания на константы, волновые функции изотропного гармонического осциллятора инвариантны относительно преобразования Фурье: сами функции и их фурье-образы практически совпадают. Таким свойством обладают функции Эрмита и только они, и мы предсказываем волновые функции стационарных состояний осциллятора.

КАРТИНЫ ШРЕДИНГЕРА И ГЕЙЗЕНБЕРГА

Зависимость от времени можно ввести в квантовую механику разными способами. Они называются разными картинами (представлениями).

До сих пор мы пользовались картиной Шредингера, в которой считается, что всю зависимость от времени несут векторы состояния (волновые функции), а в операторы наблюдаемых она может входить лишь в исключительных случаях (например, в гамильтониан системы, находящейся в нестационарных внешних условиях). Основным динамическим уравнением в картине Шредингера является уравнение Шредингера.

iiyш(t) = ш yш(t).

Оно позволяет связать вектор состояния yш(t) в произвольный момент времени t с вектором состояния yш(t0), заданным в начальный момент . Ведем оператор эволюции ) определением

 yш(t) = )yш(t0).

Так как нормировка векторов не должна меняться во времени, имеем:

1 = áyш(t0)Uyш(t0)  = áyш(t)Uyш(t)  = áyш(t0)  yш(t0) ,

т.е. ) должен быть унитарным оператором:

 .

Если гамильтониан  не зависит явно от времени (стационарные внешние условия), то оператор эволюции может быть выписан в явном виде:

) =

Тогда

 yш(t) = .

Дифференцируя это соотношение по времени, найдем::

  yш(t) =- i/iш=- i/iш yш(t)  ii yш(t) = ш yш(t),

т.е. получим уравнение Шредингера, как и должно быть.

Перейдем теперь к картине Гейзенберга, совершая унитарное преобразование

 yг(t) = yш(t) =  )yш(t0) =

= yш(t0) = yш(t0)

т.е.

 yг(t) = yш(t0) = yг(t0)  yг.

Таким образом, в картине Гейзенберга векторы состояний не меняются во времени: один и тот же вектор описывает состояние системы во все моменты времени.

Но теперь вся зависимость от времени перекидывается на операторы наблюдаемых, унитарное преобразование которых дает

 г(t) = ш) .

При унитарном преобразовании средние значения наблюдаемых не меняются. Их в разных картинах можно записать как

 áFñ (t) = áyш(t) Uш yш(t) =

= áyгUш)yг = áyгUг(t) yг.

Таким образом, зависимость от времени средних значений не зависит от выбора картины, а именно она-то и является самой главной.

В картине Гейзенберга уравнения Шредингера нет, так как векторы состояний постоянны. Основные динамические уравнения формулируются для операторов. Чтобы получить их, найдем сначала уравнение, которому подчиняется оператор эволюции и сопряженный ему. Имеем:

 yш(t)  = )yш(t0) .

Дифференцируем по времени:

 iiyш(t)  = ii)yш(t0) .

С другой стороны, согласно уравнению Шредингера,

 iiyш(t)  = ш yш(t0)  = ш yш(t0) .

Сравнение дает уравнение

 ii) = ш ),

к которому нужно добавить очевидное начальное условие

.

Переходя к сопряженному уравнению с учетом эрмитовости найдем

  ii = ш

Гамильтониан в КГ имеет вид

 г = 

Если

,

то мы выносим ш налево и пользуемся унитарностью . Тогда получим

 г (t) = ш  .

Это справедливо, в частности, когда ш не зависит от времени и (см. выше)

.

Очевидно, что в этом случае .

Теперь, пользуясь уравнениями для  и , мы можем получить динамические уравнения для операторов наблюдаемых в картине Гейзенберга:

 г(t) = .

Дифференцируем по времени: 

 г(t) =

 

.

В итоге получаем уравнения Гейзенберга - динамические уравнения в картине Гейзенберга:

 г(t) ,

где по определению

.

Картина Шредингера хороша при практической работе (уравнения для векторов состояний в определенном представлении становятся дифференциальными уравнениями для обычных функций - волновых функций). Картина Гейзенберга с этой точки зрения хуже (уравнения для операторов), но она хороша при общих размышлениях. В частности, позволяет с легкостью обсудить законы сохранения.

FILENAME lecture05.doc

 -  PAGE 32 -


 

А также другие работы, которые могут Вас заинтересовать

50274. ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ ВИСЦЕРАЛЬНЫХ ФУНКЦИЙ. РОЛЬ ГОРМОНОВ В РЕГУЛЯЦИИ 356.5 KB
  Взаимодействие функций организма как целостной системы достигается за счет деятельности его механизмов регуляции. Нарушение этих механизмов ведет к рассогласованию функций, к дезадаптации организма, т.е. к развитию различных патологических состояний.
50275. РЕГУЛЯЦИЯ ВИСЦЕРАЛЬНЫХ ФУНКЦИЙ ОРГАНИЗМА. ФИЗИОЛОГИЯ АВТОНОМНОЙ НЕРВНОЙ СИСТЕМЫ 104 KB
  Разгружают ЦНС от переработки дополнительной информации; Объективизируют регуляцию внутренних органов, обеспечивают местные механизмы регуляции висцеральных функций (интрамуральный ганглий сердца – цетр кардиокардиальных рефлексов); Надежность регуляции внутренних органов.
50276. ОБЩАЯ ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ. ФИЗИОЛОГИЯ АНАЛИЗАТОРОВ 182.5 KB
  ЦНС получает информацию о внешнем мире и внутреннем состоянии организма от специализированных к восприятию раздражений органов рецепции. Многие органы рецепции называют органами чувств потому, что в результате их раздражения и поступления от них импульсов в кору больших полушарий головного мозга
50277. ФИЗИОЛОГИЯ БОЛИ 161.5 KB
  Соматическая: поверхностная (кожа) и глубокая (мышцы, суставы, связки, кости). Висцеральная – во внутренних органах (воспаление, деструкция, дискинезия, нарушение кровоснабжения); Проекционная (фантомная). Отраженная (зоны Захарьина-Геда)
50278. Промежуточный мозг 64.5 KB
  Анатомически промежуточный мозг (diencephalon) является отделом мозгового ствола. Однако, в отличие от среднего и продолговатого мозга, промежуточный мозг в эмбриогенезе формируется вместе с большими полушариями из переднего мозгового пузыря.
50279. ФИЗИОЛОГИЯ ЗРИТЕЛЬНОГО АНАЛИЗАТОРА 6.53 MB
  Определение ЗА: это сенсорная система, воспринимающая электромагнитные излучения с длинами волн видимого диапазона (400 – 760 нм) и формирующая световые ощущения.
50280. ОПЕРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ МЕТОДОМ ТАНГЕНС-ГАЛЬВАНОМЕТРА 130.5 KB
  Тангенс-гальванометр –- это прибор состоящий из короткой по длине катушки индуктивности радиуса R и подвижной магнитной стрелки вертикальная ось которой закреплена в геометрическом центре катушки рис. 4 Магнитное поле созданное током протекающим по виткам катушки тангенс-гальванометра направлено вдоль оси катушки и перпендикулярно плоскостям витков с током. 2 Величина напряженности магнитного поля в центре N круговых токов короткой катушки индуктивности может быть найдена по закону Био-Савара-Лапласа 3 где I –...
50281. ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА 160 KB
  Величина удельного заряда может быть измерена различными методами. В данной работе используется «метод магнетрона», в котором используется отклонение магнитным полем электрона, движущегося ускоренно под действием электрического поля, перпендикулярного магнитному. На заряженную частицу, движущуюся со скоростью v в однородном (одинаковом во всех точках пространства) магнитном поле с индукцией В, действует сила Лоренца...
50282. Интерфейс программного комплекса Electronics Workbench 2.28 MB
  Интерфейс пользователя состоит из полоски выпадающего меню панели инструментов и рабочей области. Полоса выпадающего меню состоит из следующих компонент: 1. File меню работы с файлами 2. Edit меню редактирования 3.