67555

СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ

Лекция

Физика

Зависимость от времени можно ввести в квантовую механику разными способами. До сих пор мы пользовались картиной Шредингера в которой считается что всю зависимость от времени несут векторы состояния волновые функции а в операторы наблюдаемых она может входить лишь в исключительных...

Русский

2014-09-12

611.5 KB

0 чел.

Л Е К Ц И Я  5

СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ

В координатном представлении

 = r,   = iiÑ.

Коммутаторы этих операторов таковы :

 = iidkl

Очевидно, что коммутатор оператора координаты с «чужим» компонентом импульса (скажем,  с ) равен нулю. Проверим, что

 = ii (  и , аналогично ).

Имеем:

 y(x) = y- y = x +ii(xy) =

 

 = ii x+ ii x+ ii y = ii  y,

откуда в силу произвольности y и получаем, что надо.

Итак, коммутатор координаты со «своим» импульсом отличен от нуля. Это накладывает ограничения на дисперсии координаты и импульса в заданном состоянии, называемые соотношениями неопределенностей. Проведем общее рассмотрение для наблюдаемых A и B, записывая

 = i,

где . Операторы  и  эрмитовы, и множитель i введен для того, чтобы оператор  был также эрмитовым (сам коммутатор антиэрмитов). Введем операторы уклонения от среднего значения в заданном состоянии:

  ,   .

Они эрмитовы и удовлетворяют тому же коммутационному соотношению:

 = i.

Дисперсией наблюдаемой A (аналогично B) в состоянии y  называется

 Dy(A) (DA)2 .

Задача - получить ограничения на дисперсии наблюдаемых A и B.

Образуем скалярное произведение (D,D) и найдем его мнимую часть:

Im(Dy, Dy) = 1/2i (Dy, D y) - (Dy, Dy)* =

= 1/2i( D y, D y)-( Dy, D y) =

= 1/2i( y, DD y)-( y, DD y) =

= 1/2i (y, y) = 1/2i(y, y) = 1/2C.

Учтем теперь, что модуль мнимой части не больше модуля самого числа, а затем воспользуемся неравенством Коши - Буняковского:

Im(Dy, Dy)   (Dy, Dy)  =

=  = (DA)(DB).

Сравнивая с предыдущим, мы и приходим к общему соотношению неопределенностей:

 DADВ l 1/2UCU.

В частности, для координаты и импульса  = i, а потому C = i, и получаем соотношение неопределенностей Гейзенберга:

 DxDpx l i/2.

Ни в одном состоянии дисперсии координаты и импульса не могут обе быть нулями. Значит x и px совместно неизмеримы.

МАТРИЧНОЕ ПРЕДСТАВЛЕНИЕ

Возьмем какой-то эрмитов оператор  и поставим задачу на собственные значения:

 n = Ann.

Допустим, что спектр - чисто дискретный. Это значит, что собственные векторы образуют ортонормированный базис:

(jn, jm) = dnm  Û  jnjm = dnm,

 jnjn = .

Любой вектор y можно разложить по этому базису:

 y = ynjn,

где дискретная последовательность коэффициентов Фурье

 yn = jny

будет однозначно задавать состояние y. Расположим числа yn в матрицу - столбец:

 y = .

Она и представляет вектор состояния y. Образуем эрмитово сопряженную матрицу, которая будет матрицей - строкой с компонентами

= jn y* = yjn = y*n.

Она будет представлять совектор y :

 y= (y*1, y*2,...).

С использованием условия полноты jnjn =  скалярный квадрат запишется как

 y y  = y  jn jny = yn2 .

Если вектор y  нормирован, т.е. y y =1, то сумма также равна 1, т.е. ряд сходится.

Рассмотрим теперь некоторый оператор ,который действуя на y  переводит его в :

 = y .

Умножая скалярно на  jn и пользуясь условием полноты, найдем:

  jn y  =  jn y  =  jn jm jm y ,

или

 =Fnmym,

где введена матрица оператора:

 Fnm   jn jm.

Оператор  переводит y в , а матрица Fnm переводит компоненты  yn вектора y в компоненты  вектора . Если оператор эрмитов, то и его матрица эрмитова:

 Fnm = (Fmn)*.

Среднее значение оператора  в состоянии y теперь вычисляется так:

F =  = ,

т.е.

 F = Fnm y*n ym.

Рассмотрим теперь другое представление, порожденное оператором :

  jR n = Bn jR n,  jR n jR m = dnm,  jR n jR n = .

Векторы y в нем представляются другими волновыми функциями:

 yRn =  jR n y,

а операторы  - другими матрицами:

.

Но так как оба базиса - ортонормированные, то волновые функции и матрицы операторов в обоих представлениях связаны унитарным преобразованием:

 yRn = Unmym, FRnm = UnnRFnRmRU+mRm.

Раньше мы формулировали эти утверждения на языке операторов.

Найдем шпур (след) матрицы оператора  в B -представлении:

 

= ,      (U+U = ),

т.е. шпур матрицы инвариантен относительно унитарного преобразования - не зависит от выбора представления.

Задача на собственные значения оператора

 y = Fy

в матричном A-представлении ставится как

(Fnm-Fdnm)ym = 0.

Система однородных линейных уравнений для определения ym имеет нетривиальные решения при условии

det CFnm-FdnmC = 0

Это вековое или характеристическое уравнение является алгебраическим. Его решения F1,F2,...Fk... есть искомые собственные значения. Подставляя каждое из них в систему уравнений, найдем последовательности

 F1:                     y(1)1, y(1)2,... y(1)n,.....

 F2:                              y(2)1, y(2)2,... y(2)n...

                  ..............................................................

представляющие собственные векторы y(n), т.е. являющиеся их волновыми функциями.

Если в качестве базисных векторов выбрать собственные векторы  yn  оператора , то его матрица будет диагональной:

 Fnm = yn ym  = yn Fmym  = Fm yn ym  = Fmdnm

Таким образом, решение задачи на собственные значения оператора  равнозначна диагонализации его матрицы: находимUyn, устанавливаем унитарное преобразование, связывающее Uyn с Ujn, и совершаем это унитарное преобразование над исходной матрицей Fnm. В результате и получим диагональную матрицу.

Все те же операции можно проделать и в случае, когда спектр оператора  - непрерывный, но все надо понимать в обобщенном смысле. Базис образуют обобщенные собственные векторы:

 A = AA, AB = d(A-B),    òdAAA = .

Волновая функция

 y ()= Ay

есть «настоящая» функция, ибо зависит от непрерывного аргумента. Если оператор  переводит вектор y в , т.е.

 = y,

то для волновых функций имеем:

(A)  A = Ay = òAAR ARy,

т.е.

(A) = òF(A,AR)y(AR)dAR,

где

 F(A,AR)  AAR

ядро интегрального оператора .

Для произведения двух операторов

 

 

получим

 F1(A,AR) = A23 AR = A2ARR ARR3AR dARR,

т.е. ядро произведения получается как свертка операторов-сомножителей:

 F(A,AR) = ò F(A, ARR) F(ARR,AR)dARR.

- . .- . - . - .

Рассмотрим уравнение Шредингера

 iiy = y,

которое для одной частицы во внешнем поле записывается как

 iiy = y +V(r)y.

В координатном представлении мы его уже получали:

 iiy(r,t) = -i2/2m Ñ2 y(r,t) + (r) y(r,t).

Найдем теперь уравнение Шредингера в импульсном представлении. Нам нужно найти действие оператора , т.е.  =  и V(r) на волновую функцию (p), которая есть

 (p) = ácpy.

Для ядра оператора V имеем

 W(p,pR) = ácpcpR = (cp(r),V(r) cpR (r)),

где cp(r) - собственные функции оператора импульса в координатном представлении:

 cp(r) = .

Подстановка дает:

W(p,pR) = ,

т.е. ядро W получается из V путем преобразования Фурье:

W(p,pR) = .

Для оператора кинетической энергии  имеем:

K(p,pR) =  i2/2m(cp(r),Ñ2cp(rR)) =  i2/2m=

=  i2/2m  = p2/2md(p-pR):

                  K(p,pR) = p2/2md(p-pR).

Подставляем все это в уравнение Шредингера в импульсном представлении:

ii.

Получаем:

 ii ,

т.е.

 ii ,

где

 W(p,pR) = .

В итоге получилось интегро-дифференциальное уравнение.

Если V(r)есть полином от r2,т.е. включает сумму членов вида

 Vn = anr2n,

то eсть уравнение Шредингера сводится к дифференциальному. Действительно, в этом случае

Wn(p,pR) = =

= an (-i2Ñ2p )n = an(-i2Ñ2p )nd(p-pR);

ò Wn(p,pR) (pR,t)dpR = an(-i2Ñ2p )nò d(p-pR) (pR,t)dp = an (-i2Ñ2p )n(p,t);

ii(p,t) = (p2 /2m +an(-i2Ñ2p )n) (p,t).

Важный пример - изотропный гармонический осциллятор, с

 V(r)= (2  k/m).

В координатном представлении уравнение Шредингера записывается как

 iiy(r,t) = -i2/2mÑ2 y(r,t) + (m w2 r2/2)y(r,t).

В импульсном представлении, учитывая, что n = 1 и a = mw22, имеем:

 ii(p,t) = p2/2m(p,t) - i2mw22Ñ2(p,t)

Уравнения с точностью до переобозначения констант идентичны, а значит идентичны и их решения. Но они, как функции в координатном и импульсном представлениях, должны быть связаны преобразованием Фурье. Поэтому, если не обращать внимания на константы, волновые функции изотропного гармонического осциллятора инвариантны относительно преобразования Фурье: сами функции и их фурье-образы практически совпадают. Таким свойством обладают функции Эрмита и только они, и мы предсказываем волновые функции стационарных состояний осциллятора.

КАРТИНЫ ШРЕДИНГЕРА И ГЕЙЗЕНБЕРГА

Зависимость от времени можно ввести в квантовую механику разными способами. Они называются разными картинами (представлениями).

До сих пор мы пользовались картиной Шредингера, в которой считается, что всю зависимость от времени несут векторы состояния (волновые функции), а в операторы наблюдаемых она может входить лишь в исключительных случаях (например, в гамильтониан системы, находящейся в нестационарных внешних условиях). Основным динамическим уравнением в картине Шредингера является уравнение Шредингера.

iiyш(t) = ш yш(t).

Оно позволяет связать вектор состояния yш(t) в произвольный момент времени t с вектором состояния yш(t0), заданным в начальный момент . Ведем оператор эволюции ) определением

 yш(t) = )yш(t0).

Так как нормировка векторов не должна меняться во времени, имеем:

1 = áyш(t0)Uyш(t0)  = áyш(t)Uyш(t)  = áyш(t0)  yш(t0) ,

т.е. ) должен быть унитарным оператором:

 .

Если гамильтониан  не зависит явно от времени (стационарные внешние условия), то оператор эволюции может быть выписан в явном виде:

) =

Тогда

 yш(t) = .

Дифференцируя это соотношение по времени, найдем::

  yш(t) =- i/iш=- i/iш yш(t)  ii yш(t) = ш yш(t),

т.е. получим уравнение Шредингера, как и должно быть.

Перейдем теперь к картине Гейзенберга, совершая унитарное преобразование

 yг(t) = yш(t) =  )yш(t0) =

= yш(t0) = yш(t0)

т.е.

 yг(t) = yш(t0) = yг(t0)  yг.

Таким образом, в картине Гейзенберга векторы состояний не меняются во времени: один и тот же вектор описывает состояние системы во все моменты времени.

Но теперь вся зависимость от времени перекидывается на операторы наблюдаемых, унитарное преобразование которых дает

 г(t) = ш) .

При унитарном преобразовании средние значения наблюдаемых не меняются. Их в разных картинах можно записать как

 áFñ (t) = áyш(t) Uш yш(t) =

= áyгUш)yг = áyгUг(t) yг.

Таким образом, зависимость от времени средних значений не зависит от выбора картины, а именно она-то и является самой главной.

В картине Гейзенберга уравнения Шредингера нет, так как векторы состояний постоянны. Основные динамические уравнения формулируются для операторов. Чтобы получить их, найдем сначала уравнение, которому подчиняется оператор эволюции и сопряженный ему. Имеем:

 yш(t)  = )yш(t0) .

Дифференцируем по времени:

 iiyш(t)  = ii)yш(t0) .

С другой стороны, согласно уравнению Шредингера,

 iiyш(t)  = ш yш(t0)  = ш yш(t0) .

Сравнение дает уравнение

 ii) = ш ),

к которому нужно добавить очевидное начальное условие

.

Переходя к сопряженному уравнению с учетом эрмитовости найдем

  ii = ш

Гамильтониан в КГ имеет вид

 г = 

Если

,

то мы выносим ш налево и пользуемся унитарностью . Тогда получим

 г (t) = ш  .

Это справедливо, в частности, когда ш не зависит от времени и (см. выше)

.

Очевидно, что в этом случае .

Теперь, пользуясь уравнениями для  и , мы можем получить динамические уравнения для операторов наблюдаемых в картине Гейзенберга:

 г(t) = .

Дифференцируем по времени: 

 г(t) =

 

.

В итоге получаем уравнения Гейзенберга - динамические уравнения в картине Гейзенберга:

 г(t) ,

где по определению

.

Картина Шредингера хороша при практической работе (уравнения для векторов состояний в определенном представлении становятся дифференциальными уравнениями для обычных функций - волновых функций). Картина Гейзенберга с этой точки зрения хуже (уравнения для операторов), но она хороша при общих размышлениях. В частности, позволяет с легкостью обсудить законы сохранения.

FILENAME lecture05.doc

 -  PAGE 32 -


 

А также другие работы, которые могут Вас заинтересовать

46252. Языковая просодия, уровни изучения. Фразовая интонация: составляющие факторы. Фразовое ударение в высказывании. Проблема экспрессивного выделения 13.67 KB
  Звуковой такт звуковая синтагма совокупность нескольких слогов объединённых одним ударением это часть звуковой фразы. Выделение голосом слов в предложении или во фразе называется фразовым ударением. В русском предложении cлова не выделяются так резко фразовым ударением и оно падает почти на каждое слово; русская речь по сравнению с английской производит впечатление более плавной. Конечно и в русской речи есть слова которые не выделяются ударением но их не так много.
46253. Понятие о постоянстве объекта в концепции Ж. Пиаже 13.64 KB
  Пиаже Поскольку объективное знание не может приобретаться посредством простой регистрации внешней информации а имеет свой источник во взаимодействиях между субъектом и объектами оно с необходимостью предполагает два типа активности: с одной стороны координацию самих действий и с другой стороны установление взаимоотношений между объектами. Эти два типа активности взаимозависимы поскольку данные отношения устанавливаются единственно через действия. Отсюда следует что объективное знание всегда подчинено определенным структурам действия. Но...
46255. Основные направления научного изучения языковой лексики 13.53 KB
  Лексиколо́гия наука о слове; это раздел языкознания изучающий словарный состав языка или лексику. В лексикологии рассматриваются: слово и его значение система взаимоотношений слов история формирования современной лексики функциональностилевое различие слов в разных сферах речи Объектом изучения является слово. Оно изучается также в морфологии и словообразовании. Однако если в них слова оказываются средством для изучения грамматического строя и словообразовательных моделей и правил языка то в лексикологии слова изучаются для...
46257. Развитие слова в языке в формальном и семантическом аспектах. Понятие лексико-семантического варианта 13.44 KB
  Понятие лексикосемантического варианта. Понятие лексемы и лексикосемантического варианта. В лексикографии для противопоставления сложных и простых знаков используются термины лексема и лексикосемантический вариант в традиции восходящей к А. Можно сказать что разные лексикосемантические варианты с совпадающей формой относятся либо к одной случай полисемии или многозначности либо к разным лексемам случай омонимии.
46258. Д.Б. Эльконин «Историческое происхождение развернутой формы игровой деятельности» 13.42 KB
  Алт для воспитания детей на ранних ступенях развития общества характерны следующие черты: вопервых одинаковое воспитание всех детей и участие всех членов общества в воспитании каждого ребенка; вовторых всесторонность воспитания каждый ребенок должен уметь делать все что умеют делать взрослые и принимать участие во всех сторонах жизни общества членом которого он является; втретьих кратковременность периода воспитания дети уже в раннем возрасте знают все задачи которые ставит жизнь они рано становятся независимыми от взрослых их...
46259. Парадигма ООП. Классы и объекты. Области видимости. Конструкторы. Деструкторы 13.32 KB
  Наследование позволяет создавать иерархию объектов, в которой объекты-потомки наследуют все свойства своих предков. Свойства при наследовании повторно не описываются. Кроме унаследованных, потомок обладает собственными свойствами
46260. Noun. The category of case 13.31 KB
  The ctegory of cse Cse is morphologicl ctegory of noun showing its reltions to other objects or phenomen mnifested in the noun declension. There re four theories concerning the cse system of English. The first is the ‘limited cse theory’ nd recognizes the system of two cses the common nonmrked member of the opposition nd possessive or genitive cse expressed by the suffix ‘s [s z iz]. The genitive cse of the bulk of the plurl nouns is expressed only by the grphic sign of the postrophe phoneticlly unexpressed.