67557

НОРМИРОВКА В НЕПРЕРЫВНОМ СПЕКТРЕ

Лекция

Физика

Классическому инфинитному движению отвечают состояния с обобщенными волновыми функциями которые нельзя нормировать а энергетический спектр является непрерывным. Возникает проблема нормировки волновых функций непрерывного спектра. Реально же на самом деле спектр всегда является дискретным так как...

Русский

2014-09-12

299 KB

2 чел.

Л Е К Ц И Я   7

НОРМИРОВКА В НЕПРЕРЫВНОМ СПЕКТРЕ

Итак, классическому финитному движению отвечает в квантовой механике состояния с нормируемыми волновыми функциями, которые можно нормировать на 1, а энергетический спектр является дискретным. Классическому инфинитному движению отвечают состояния с обобщенными волновыми функциями, которые нельзя нормировать, а энергетический спектр является непрерывным.

Возникает проблема нормировки волновых функций непрерывного спектра. Раньше мы их нормировали, и обычно так и делают, на дельта- функцию. Однако этот прием достаточно формален. Реально же на самом деле спектр всегда является дискретным, так как размеры области локализации  частицы ограничены хотя бы стенками лаборатории. Правда, часто случается так, что L>>l, где L - размеры лаборатории, а l - размеры физической системы. Влияние стенок оказывается пренебрежимо малым, и энергетические уровни расположены  столь тесно, что спектр невозможно отличить от непрерывного. Ведь в предыдущей задаче  величина L2 входила в знаменатель En, и чем она больше, тем гуще спектр.

Но реальная физическая ситуация делает оправданной так называемую «нормировку в ящике», когда частица считается находящейся в ограниченной области, хотя и больших размеров по сравнению с ее собственными размерами. Итак, все пространство разбивается на ящики и частица сажается в один из них. Так как ящик велик, влияние стенок мало и на них можно поставить любые дополнительные условия - условия Бора - Кармана - условия периодичности: требуется, чтобы волновая частица повторялась в каждом ящике. В одномерном случае это записывается как

 y(x+L) = y(x).

От такой волновой функции и требуется, чтобы

=1

Рассмотрим в качестве примера вновь свободную частицу с уравнением Шредингера

 -i2/2myRR = Ey

с волновыми функциями

 y(x) = Aei/i px ;    E = p2/2m,   ,

(импульс строго определен). Накладываем условие периодичности:

 Aei/i p(x+L) = Aei/i px,

откуда

 ei/i pL = 1   Þ   pL/I = 2pn,   nZ.

Получаем дискретный ряд значений для импульса и для энергии:

 pn = 2pi/Ln,   En = 2p2i2n2/mL2 .

При больших L спектр оказывается практически непрерывным, а нормировочная константа

 A = 

Это получается так же, как в задаче о частице в яме, где нормировочная константа как раз и была равной

 A = 

(двойки теперь нет потому, что немножко другие граничные условия - не нулевые, а периодические).

ДВИЖЕНИЕ ЧАСТИЦЫ  В ПЕРИОДИЧЕСКОМ ПОЛЕ

Рассмотрим очень важную для физики твердого тела, а значит и для физики низких температур, задачу о движении частицы в периодическом поле с потенциалом

 V(r+n) = V(r),

где

 n = n1a1 + n2a2 + n3a3

причем a1, a2, a3- тройка некомпланарных векторов, а n1, n2, n3 - произвольная тройка целых чисел. Нас интересуют стационарные состояния и энергетический спектр (общие закономерности), т.е. надо исследовать стационарное уравнение Шредингера

 y(r) = E y(r),

где

 = /2m+,  = -i2Ñ2.

Ранее мы вводили одномерный оператор трансляции

 (a) = ei/i pa,

который действует так:

 (a)y(x) = y(x+a)

и

 -1(a)() (a) = (),   (+ = 1  Þ  += -1).

Его обобщение на трехмерный случай очевидно:

 (n) = ei/ipn,

причем здесь в качестве n выбран уже вектор трансляции, по которому есть периодичность. Для потенциала имеем:

 -1(n) V(r)(n) = V(r-n) =V(r),

откуда

 V(r)(n) = (n)V(r),

т.е. оператор трансляции коммутирует сV(r):

 X(n)V(r)] = .

Кроме того, он коммутирует с  (это всегда - см. выше):

  = ,

а значит

  = ,

и потому оператор  порождает интеграл движения.

По этой же причине могут быть выбраны общие собственные функции операторов  и , т.е. стационарные состояния будут характеризоваться не только значениями энергии, но и собственными значениями оператора трансляции:

 y(r) = t(n) y(r).

Применим к этому уравнению оператор :

  y(r) = t*(n)t(n) y(r).

Но так как  = , то слева стоит просто y, а потому

|t(n)| = 1,

т.е. t(n) есть некий фазовый множитель (это следствие унитарности ):

 t(n) = ei/iqn.

Величина q называется квазиимпульсом ( по понятным причинам). В отличие от обычного импульса, квазиимпульс определен неоднозначно. Можно сделать замену

 q ® q + q

где

 qn = 2pik,

а k - произвольное целое число.

Удобно перейти к функциям Блоха

 y(r) = ei/iqrUq(r),

которые можно рассматривать как плоские волны (с точностью до сделанного замечания), модулированные функцией Uq(r). Покажем, что функция Uq(r) является периодической с периодом потенциала. Из определения  имеем

  y(r) = y(r+n) = ei/iq(r+n) Uq(r+n).

С другой стороны, так как y(r) - собственная функция , то

y(r) = t(n)y(r) = ei/iqn y(r) = ei/iqr ei/iqn Uq(r) = ei/iq(r+n)Uq(r).

Сравнение дает

 Uq(r+n) = Uq(r),

что и утверждалось. Если в уравнение Шредингера

-i2/2m Ñ2 y(r) +V(r) y(r) = Ey(r)

подставить функцию Блоха, то получим уравнение

 (i2/2m(Ñ + i/iq)2 + E(q) -V(r) )Uq(r) = 0.

                         . - . - . - .-

Пусть имеется бесконечная кубическая кристаллическая решетка, в которой движется электрон, отталкивающийся на гранях. Потенциал - аддитивный:

 V(r) = ,

причем отталкивание моделируется дельта-функциями:

 V(ri) =d(ri-na),

представляющие собой бесконечно высокие бесконечно тонкие потенциальные барьеры. Разделяя переменные, придем к одномерным задачам типа

 -i2/2myRR(x) +V(x)y(x) = Ey(x),

где потенциал V(x) называется «гребенкой Дирака». Внутри одной ячейки, т.е. в интервале 0<x<a, потенциал равен нулю, так что уравнение Шредингера записывается как

 -i2/2myRR(x) = Ey(x),

и имеет решение

 y(x) = Aei/ipx+Be-i/ipx,      E = p2/2m.

Одно граничное условие дает условие периодичности, из которого следует (см. выше)

 y(x+a) = ei/iqay(x).

Получим теперь условия сшивания решений при x<0 и x>0 в точке x=0, для чего запишем в окрестности этой точки уравнение Шредингера

 -i2/2myRR(x) +V0(x)d(x)y(x) = Ey(x).

Интегрируем его по малому интервалу (-e,e) устремляя затем e ®0:

-i2/2m.

Так как y(x) непрерывна, то при e ® 0 член справа стремится к нулю, и

-i2/2m(yR(e)- yR(-e))+V0y(0) = 0,

откуда

 yR(e) - yR(-e) = 2m V0/i2 y (0).

Но из условия периодичности

 yq(a-e) = eiqa/i yq(-e)   Þ    yRq(-e) = e-iqa/i yRq(q-e),

а потому

 yRq(e) - e-iqa/iyRq(a-e) = 2m V0/i2yq(0).

Итак, мы имеем следующую систему граничных условий:

yq(a+e) = eiqa/iyq(e)

yRq(e) - yRq(a-e) e-iqa/i = 2m V0/i2 y q(0).

Для констант A и B, входящих в общее решение, они дают:

Aeipa/i+Be-ipa/I = eiqa/i(A+B)

i/ipA - i/ipB - i/ipAei(p-q)a/i  +

+ i/ipB e-i(p+q)a/i = 2m V0/i2(+).

Для существования нетривиального решения детерминант должен быть равен нулю:

 

 

Легко раскрывая его, получим

 cospa/i + m V0/pi2 sinpa/I = cosqa/i.

Это есть уравнение для отыскания допустимых значений p, а значит E. Оно разрешимо лишь в том случае, если модуль правой части не больше 1:

 cospa/i + m V0/pi2 sinpa/i  1.

Имеются целые интервалы значений энергии, удовлетворяющие этому условию, и чередующиеся с ними интервалы, где условие не выполняется. Таким образом, энергетический  спектр состоит не из отдельных уровней, а представляет собой последовательности запрещенных и разрешенных энергетических зон.

Разрешенные энергетические зоны называются зонами Бриллюэна.

Их границы определяются из соотношения

 cosqa/i = 1.

Можно показать, что по мере роста энергии зоны Бриллюэна  расширяются, а зазоры между ними уменьшаются, так что спектр приближается к непрерывному.

 

КВАНТОВЫЕ СКОБКИ ПУАССОНА

Вернемся к картине Гейзенберга, в которой динамические уравнения имеют вид

.

А теперь вспомним классическую механику, в которой из канонических уравнений Гамильтона

,     

следует, что любая динамическая переменная f=f(p,q,t) меняется во времени в соответствии с уравнением

 df/dt =  + {H,f}

где {H,f}есть обычная (классическая ) скобка Пуассона

{g,f} = .

Видим, что у нее есть прямой аналог - квантовая скобка Пуассона:

{H,f}кл  ®  ,

или, вообще,

.

Аналогия простирается достаточно далеко - и там, и тут имеют место свойства:

  1.  Антисимметрия {G,F} = -{F,G};
  2.  Тождество Якоби {G,{F,H}} + {H,{G,F}} + {F,{H,G}} = 0;
  3.  Линейность {G,a1F1+ a2F2} = a1{G,F1} + a2{G,F2};
  4.  «Правило Лейбница» {GH,F} = G{H,F} + {G,F}H.

Дирак поставил такую задачу. Сопоставить классическим величинам f операторы  так, чтобы классическая скобка Пуассона переходила в бинарную комбинацию со всеми формальными свойствами, перечисленными выше. И он показал, что этим условием квантовая скобка Пуассона определяется почти однозначно:

,

где a - некоторая универсальная постоянная, одинаковая для всех пар наблюдаемых. Осталось положить a = 1/i. Собственно говоря, при строгом построении квантовой механики именно здесь впервые и появляется постоянная Планка, и такой способ ее введения может служить просто ее определением.

КАНОНИЧЕСКОЕ КВАНТОВАНИЕ

В классической механике легко получить следующие скобки Пуассона:

{qi,qj} = {pi,pj} = 0; {qi,pj} = -dij.

Постулируем, что для соответствующих им операторов в квантовой механике сохраняются те же соотношения, но с заменой обычных скобок Пуассона квантовыми. Тогда сразу получим

== 0;     = iidij.

Это и есть каноническое квантование. Самое интересное следующее. Можно показать (теорема фон Неймана), что коммутационными соотношениями операторы  и  определяются практически однозначно - с точностью до преобразования унитарной эквивалентности. Значит достаточно предъявить какую-то одну пару (,) - например, шредингеровскую xi,. А все другие наблюдаемые (кроме спецфческих, типа спина) выражаются в квантовой механике через  и  так же, как в классической механике.

ТЕОРЕМА ЭРЕНФЕСТА

Как мы видели, в любой картине, в том числе в шредингеровской, средние значения меняются во времени в соответствии с уравнением

.

Применим его к одномерному движению частицы с гамильтонианом

 = ,

полагая сначала =, а затем =:

,   .

Вычисляем коммутаторы:

 

=

= ;

:

[V(),]y(x)=V()y(x)- V()y(x)=

                  = -V(x)iid y(x)/dx + iid y(x)/d(Vy) =

 = -iiVd y(x)/dx+ii Vd y(x)/dx+iid V/dxy Þ [V(x),] =

 = iidV /dx.

 

Подставляя в уравнения, получим квантовые аналоги уравнений Гамильтона:

     .

Дифференцируя первое уравнение по времени и подставляя из второго, получим квантовый аналог второго закона Ньютона:

.

Итак, средние значения координаты и импульса подчиняются тем же уравнениям, что в классической механике. Это и есть теорема Эренфеста.

FILENAME lecture07.doc

-  PAGE 52 -


 

А также другие работы, которые могут Вас заинтересовать

84456. Слова з прямим і переносним значенням 38 KB
  Мета: формувати в учнів поняття про пряме і переносне значення слів; виробляти вміння визначати значення слова в тексті самостійно вживати слова в переносному значенні; розвивати мовне чуття навчити учнів зв’язно висловлювати свої думки.
84457. Зміна прикметників за зразком «один-багато» 147.5 KB
  Мета: активізувати знання учнів про прикметник. Формувати поняття про прикметник на основі істотних ознак (питання, значення, роль у реченні). Розвивати фонематичний слух, орфографічну грамотність. Виховувати любов до рідного краю, спадщини предків, пошани до народних традицій.
84458. Перевірка мовних знань і вмінь з теми «Іменник» 71 KB
  Послухайте вірш і зловіть зимові іменники хлопками. Чим цікаві виписані іменники пов’язані з зимовою порою Як вони називаються близькі за значенням 2 вручення сніжинки з буквою о Наступне завдання яке пропонує сніговичок це Робота в групах Гра Проціди крізь сито Розписати слова у 3 колонки.
84459. Закріплення знань про слова, які вказують на предмети 47 KB
  Мета. Закріпити знання учнів про слова, які означають назву предмета. Вчити розпізнавати іменники в тексті, будувати з ними речення. Формувати навички правильного написання словникових слів. Розвивати логічне мислення, творчу уяву, самостійність під час сприймання матеріалу.
84460. Поняття про фразеологізми та їх лексичне значення 55.5 KB
  Мета: дати учням загальні відомості про фразеологізми; вчити пояснювати значення фразеологізмів правильно використовувати їх у мовленні; ознайомити із фразеологічним словником української мови; розвивати культуру мовлення образне мислення; виховувати бажання здобути знання.
84461. Апостроф. Литовська народна казка «Чому кіт умивається після сніданку?» 840 KB
  Мета: вчити дітей правильно вимовляти та писати слова з апострофом; формувати вміння ставити апостроф у словах; розвивати зв;язне мовлення навички свідомого виразного читання вміння спостерігати порівнювати; поповнювати словниковий запас; прищеплювати інтерес до усної народної творчості...
84463. Закріплення знань про головні та другорядні члени речення. Встановлення зв’язку слів у реченнях 52.5 KB
  Мета: закріпити знання учнів про члени речення; формувати вміння визначати в реченнях головні й другорядні члени речення встановлювати зв’язок слів у реченні за допомогою питань; розвивати зв’язне мовлення; виховувати любов до природи.
84464. Встановлення зв’язку іменника з прикметником 44 KB
  Мета: формувати в учнів ключові компетентності, а саме: вміння вчитися – самоорганізовуватися до навчальної діяльності у взаємодії, планувати свої дії, доводити роботу до кінця; загальнокультурну компетентність – дотримуватися норм мовленнєвої культури, зв’язно висловлюватися в контексті змісту...