67557

НОРМИРОВКА В НЕПРЕРЫВНОМ СПЕКТРЕ

Лекция

Физика

Классическому инфинитному движению отвечают состояния с обобщенными волновыми функциями которые нельзя нормировать а энергетический спектр является непрерывным. Возникает проблема нормировки волновых функций непрерывного спектра. Реально же на самом деле спектр всегда является дискретным так как...

Русский

2014-09-12

299 KB

4 чел.

Л Е К Ц И Я   7

НОРМИРОВКА В НЕПРЕРЫВНОМ СПЕКТРЕ

Итак, классическому финитному движению отвечает в квантовой механике состояния с нормируемыми волновыми функциями, которые можно нормировать на 1, а энергетический спектр является дискретным. Классическому инфинитному движению отвечают состояния с обобщенными волновыми функциями, которые нельзя нормировать, а энергетический спектр является непрерывным.

Возникает проблема нормировки волновых функций непрерывного спектра. Раньше мы их нормировали, и обычно так и делают, на дельта- функцию. Однако этот прием достаточно формален. Реально же на самом деле спектр всегда является дискретным, так как размеры области локализации  частицы ограничены хотя бы стенками лаборатории. Правда, часто случается так, что L>>l, где L - размеры лаборатории, а l - размеры физической системы. Влияние стенок оказывается пренебрежимо малым, и энергетические уровни расположены  столь тесно, что спектр невозможно отличить от непрерывного. Ведь в предыдущей задаче  величина L2 входила в знаменатель En, и чем она больше, тем гуще спектр.

Но реальная физическая ситуация делает оправданной так называемую «нормировку в ящике», когда частица считается находящейся в ограниченной области, хотя и больших размеров по сравнению с ее собственными размерами. Итак, все пространство разбивается на ящики и частица сажается в один из них. Так как ящик велик, влияние стенок мало и на них можно поставить любые дополнительные условия - условия Бора - Кармана - условия периодичности: требуется, чтобы волновая частица повторялась в каждом ящике. В одномерном случае это записывается как

 y(x+L) = y(x).

От такой волновой функции и требуется, чтобы

=1

Рассмотрим в качестве примера вновь свободную частицу с уравнением Шредингера

 -i2/2myRR = Ey

с волновыми функциями

 y(x) = Aei/i px ;    E = p2/2m,   ,

(импульс строго определен). Накладываем условие периодичности:

 Aei/i p(x+L) = Aei/i px,

откуда

 ei/i pL = 1   Þ   pL/I = 2pn,   nZ.

Получаем дискретный ряд значений для импульса и для энергии:

 pn = 2pi/Ln,   En = 2p2i2n2/mL2 .

При больших L спектр оказывается практически непрерывным, а нормировочная константа

 A = 

Это получается так же, как в задаче о частице в яме, где нормировочная константа как раз и была равной

 A = 

(двойки теперь нет потому, что немножко другие граничные условия - не нулевые, а периодические).

ДВИЖЕНИЕ ЧАСТИЦЫ  В ПЕРИОДИЧЕСКОМ ПОЛЕ

Рассмотрим очень важную для физики твердого тела, а значит и для физики низких температур, задачу о движении частицы в периодическом поле с потенциалом

 V(r+n) = V(r),

где

 n = n1a1 + n2a2 + n3a3

причем a1, a2, a3- тройка некомпланарных векторов, а n1, n2, n3 - произвольная тройка целых чисел. Нас интересуют стационарные состояния и энергетический спектр (общие закономерности), т.е. надо исследовать стационарное уравнение Шредингера

 y(r) = E y(r),

где

 = /2m+,  = -i2Ñ2.

Ранее мы вводили одномерный оператор трансляции

 (a) = ei/i pa,

который действует так:

 (a)y(x) = y(x+a)

и

 -1(a)() (a) = (),   (+ = 1  Þ  += -1).

Его обобщение на трехмерный случай очевидно:

 (n) = ei/ipn,

причем здесь в качестве n выбран уже вектор трансляции, по которому есть периодичность. Для потенциала имеем:

 -1(n) V(r)(n) = V(r-n) =V(r),

откуда

 V(r)(n) = (n)V(r),

т.е. оператор трансляции коммутирует сV(r):

 X(n)V(r)] = .

Кроме того, он коммутирует с  (это всегда - см. выше):

  = ,

а значит

  = ,

и потому оператор  порождает интеграл движения.

По этой же причине могут быть выбраны общие собственные функции операторов  и , т.е. стационарные состояния будут характеризоваться не только значениями энергии, но и собственными значениями оператора трансляции:

 y(r) = t(n) y(r).

Применим к этому уравнению оператор :

  y(r) = t*(n)t(n) y(r).

Но так как  = , то слева стоит просто y, а потому

|t(n)| = 1,

т.е. t(n) есть некий фазовый множитель (это следствие унитарности ):

 t(n) = ei/iqn.

Величина q называется квазиимпульсом ( по понятным причинам). В отличие от обычного импульса, квазиимпульс определен неоднозначно. Можно сделать замену

 q ® q + q

где

 qn = 2pik,

а k - произвольное целое число.

Удобно перейти к функциям Блоха

 y(r) = ei/iqrUq(r),

которые можно рассматривать как плоские волны (с точностью до сделанного замечания), модулированные функцией Uq(r). Покажем, что функция Uq(r) является периодической с периодом потенциала. Из определения  имеем

  y(r) = y(r+n) = ei/iq(r+n) Uq(r+n).

С другой стороны, так как y(r) - собственная функция , то

y(r) = t(n)y(r) = ei/iqn y(r) = ei/iqr ei/iqn Uq(r) = ei/iq(r+n)Uq(r).

Сравнение дает

 Uq(r+n) = Uq(r),

что и утверждалось. Если в уравнение Шредингера

-i2/2m Ñ2 y(r) +V(r) y(r) = Ey(r)

подставить функцию Блоха, то получим уравнение

 (i2/2m(Ñ + i/iq)2 + E(q) -V(r) )Uq(r) = 0.

                         . - . - . - .-

Пусть имеется бесконечная кубическая кристаллическая решетка, в которой движется электрон, отталкивающийся на гранях. Потенциал - аддитивный:

 V(r) = ,

причем отталкивание моделируется дельта-функциями:

 V(ri) =d(ri-na),

представляющие собой бесконечно высокие бесконечно тонкие потенциальные барьеры. Разделяя переменные, придем к одномерным задачам типа

 -i2/2myRR(x) +V(x)y(x) = Ey(x),

где потенциал V(x) называется «гребенкой Дирака». Внутри одной ячейки, т.е. в интервале 0<x<a, потенциал равен нулю, так что уравнение Шредингера записывается как

 -i2/2myRR(x) = Ey(x),

и имеет решение

 y(x) = Aei/ipx+Be-i/ipx,      E = p2/2m.

Одно граничное условие дает условие периодичности, из которого следует (см. выше)

 y(x+a) = ei/iqay(x).

Получим теперь условия сшивания решений при x<0 и x>0 в точке x=0, для чего запишем в окрестности этой точки уравнение Шредингера

 -i2/2myRR(x) +V0(x)d(x)y(x) = Ey(x).

Интегрируем его по малому интервалу (-e,e) устремляя затем e ®0:

-i2/2m.

Так как y(x) непрерывна, то при e ® 0 член справа стремится к нулю, и

-i2/2m(yR(e)- yR(-e))+V0y(0) = 0,

откуда

 yR(e) - yR(-e) = 2m V0/i2 y (0).

Но из условия периодичности

 yq(a-e) = eiqa/i yq(-e)   Þ    yRq(-e) = e-iqa/i yRq(q-e),

а потому

 yRq(e) - e-iqa/iyRq(a-e) = 2m V0/i2yq(0).

Итак, мы имеем следующую систему граничных условий:

yq(a+e) = eiqa/iyq(e)

yRq(e) - yRq(a-e) e-iqa/i = 2m V0/i2 y q(0).

Для констант A и B, входящих в общее решение, они дают:

Aeipa/i+Be-ipa/I = eiqa/i(A+B)

i/ipA - i/ipB - i/ipAei(p-q)a/i  +

+ i/ipB e-i(p+q)a/i = 2m V0/i2(+).

Для существования нетривиального решения детерминант должен быть равен нулю:

 

 

Легко раскрывая его, получим

 cospa/i + m V0/pi2 sinpa/I = cosqa/i.

Это есть уравнение для отыскания допустимых значений p, а значит E. Оно разрешимо лишь в том случае, если модуль правой части не больше 1:

 cospa/i + m V0/pi2 sinpa/i  1.

Имеются целые интервалы значений энергии, удовлетворяющие этому условию, и чередующиеся с ними интервалы, где условие не выполняется. Таким образом, энергетический  спектр состоит не из отдельных уровней, а представляет собой последовательности запрещенных и разрешенных энергетических зон.

Разрешенные энергетические зоны называются зонами Бриллюэна.

Их границы определяются из соотношения

 cosqa/i = 1.

Можно показать, что по мере роста энергии зоны Бриллюэна  расширяются, а зазоры между ними уменьшаются, так что спектр приближается к непрерывному.

 

КВАНТОВЫЕ СКОБКИ ПУАССОНА

Вернемся к картине Гейзенберга, в которой динамические уравнения имеют вид

.

А теперь вспомним классическую механику, в которой из канонических уравнений Гамильтона

,     

следует, что любая динамическая переменная f=f(p,q,t) меняется во времени в соответствии с уравнением

 df/dt =  + {H,f}

где {H,f}есть обычная (классическая ) скобка Пуассона

{g,f} = .

Видим, что у нее есть прямой аналог - квантовая скобка Пуассона:

{H,f}кл  ®  ,

или, вообще,

.

Аналогия простирается достаточно далеко - и там, и тут имеют место свойства:

  1.  Антисимметрия {G,F} = -{F,G};
  2.  Тождество Якоби {G,{F,H}} + {H,{G,F}} + {F,{H,G}} = 0;
  3.  Линейность {G,a1F1+ a2F2} = a1{G,F1} + a2{G,F2};
  4.  «Правило Лейбница» {GH,F} = G{H,F} + {G,F}H.

Дирак поставил такую задачу. Сопоставить классическим величинам f операторы  так, чтобы классическая скобка Пуассона переходила в бинарную комбинацию со всеми формальными свойствами, перечисленными выше. И он показал, что этим условием квантовая скобка Пуассона определяется почти однозначно:

,

где a - некоторая универсальная постоянная, одинаковая для всех пар наблюдаемых. Осталось положить a = 1/i. Собственно говоря, при строгом построении квантовой механики именно здесь впервые и появляется постоянная Планка, и такой способ ее введения может служить просто ее определением.

КАНОНИЧЕСКОЕ КВАНТОВАНИЕ

В классической механике легко получить следующие скобки Пуассона:

{qi,qj} = {pi,pj} = 0; {qi,pj} = -dij.

Постулируем, что для соответствующих им операторов в квантовой механике сохраняются те же соотношения, но с заменой обычных скобок Пуассона квантовыми. Тогда сразу получим

== 0;     = iidij.

Это и есть каноническое квантование. Самое интересное следующее. Можно показать (теорема фон Неймана), что коммутационными соотношениями операторы  и  определяются практически однозначно - с точностью до преобразования унитарной эквивалентности. Значит достаточно предъявить какую-то одну пару (,) - например, шредингеровскую xi,. А все другие наблюдаемые (кроме спецфческих, типа спина) выражаются в квантовой механике через  и  так же, как в классической механике.

ТЕОРЕМА ЭРЕНФЕСТА

Как мы видели, в любой картине, в том числе в шредингеровской, средние значения меняются во времени в соответствии с уравнением

.

Применим его к одномерному движению частицы с гамильтонианом

 = ,

полагая сначала =, а затем =:

,   .

Вычисляем коммутаторы:

 

=

= ;

:

[V(),]y(x)=V()y(x)- V()y(x)=

                  = -V(x)iid y(x)/dx + iid y(x)/d(Vy) =

 = -iiVd y(x)/dx+ii Vd y(x)/dx+iid V/dxy Þ [V(x),] =

 = iidV /dx.

 

Подставляя в уравнения, получим квантовые аналоги уравнений Гамильтона:

     .

Дифференцируя первое уравнение по времени и подставляя из второго, получим квантовый аналог второго закона Ньютона:

.

Итак, средние значения координаты и импульса подчиняются тем же уравнениям, что в классической механике. Это и есть теорема Эренфеста.

FILENAME lecture07.doc

-  PAGE 52 -


 

А также другие работы, которые могут Вас заинтересовать

51595. Ми — Всесвіт 48.5 KB
  Навчати учнів представляти свою країну та висловлювати власні думки. Навчати учнів писати мінітвори. Тренувати учнів у читанні.
51597. Дидактические принципы применения ПС в процессе обучения 40.5 KB
  Цель: разъяснить дидактические принципы применения программных средств в процессе обучения. 2004 Журнал ИНФО Организационный момент приветствие учащихся проверка посещаемости Постановка целей занятия Сегодня на занятии мы рассмотрим дидактические принципы применения программных средств в процессе обучения. Изучение материала Принцип научности и посильной трудности Принцип сознательности и творческой активности учащихся при руководящей роли учителя Принцип наглядности обучения и развития теоретического мышления Принцип системности и...
51598. Энергетический обмен в клетке 64.5 KB
  Цель урока: раскрыть сущность энергетического обмена подвести учащихся к выводу о значении АТФ как универсального аккумулятора энергии в клетке. Учитель: Вспомните вещество связанное со всеми выписанными словами определите его роль в клетке Ученики: вспоминают АТФ и ее роль в клетке. Учитель: Итак источником энергии для подавляющего большинства процессов в живых организмах является следующая реакция: АТФ Н2О = АДФ Н3РО4 Q 40 кДж Известно что в среднем содержание АТФ в клетках составляет от 005 до 05 ее массы. Но...
51600. Интегрированный урок. Чтение и немецкий язык 38.5 KB
  Чтение и немецкий язык во 2ом классе. Сегодня у нас необычный урок потому что на одном уроке будет проходить немецкий язык и чтение. lso wir wiederhojen Повторение алфавита правил чтения Чтение слов: Tier drei Junge Jn jetzt Dch Brigitte Schule Bhn Op Mnn sgen sehen Mutter essen Biene Körper Tür Hnd froh Yter schön lng gro Text Om Mädchen Tnte. Коллективное чтение учащимися стихотворения Н.
51601. Урок позакласного читання «Як сонечко, рідна матінка» 102.5 KB
  Сухомлинського виставка книг малюнків дітей на тему Моя мамаслайди на пісню Н. Оголошення теми і мети уроку Мама матуся мати яким прекрасним світлом сповнені ці слова Вимовляючи їх пригадуєш материнську усмішку лагідність її очей ніжність серця. Підгірянка Слово мама вимовля. Мама Яке бється для дитини Мамонька Днями і ночами Мамуся Чи є в світі що дорожче Називаю тебе я Як мама кохана Рідна ненечко моя Що трудиться для дитини До ночі від рана Гарне слово.
51602. Тварини. Охорона тварин 73 KB
  Методи і форми: групова форма роботи асоціативний кущ Компетентність: інформаційна комунікативна соціальна творча. Привітання команд Пізнайки Творча компетентність Ми пі знайки молодці Залюбки читаєм. Розминка для команд Комунікативна компетентність Найбільша тварина на землі. Інформаційна компетентність У зайців хутро посвітлішало близько зима.
51603. Учимся жить в мире и согласии 47 KB
  Тема: Учимся жить в мире и согласии Цель: Обобщить и расширить знания учащихся о таких понятиях как : друг дружба доброта справедливость ;активизировать словарь по этой теме; учить детей оценивать чувства и поступки сверстников в совместных ситуациях мотивировать . Оборудование: фонограмма песен Улыбка Настоящий друг эмблема кота Леопольда плакат Давайте жить дружно набор пословиц в конвертах для работы в парах законы дружбы на карточках сердечки из бумаги шкатулка. Ученики встают в круг и ...