67562

КВАЗИКЛАССИЧЕСКОЕ ПРИБЛИЖЕНИЕ

Лекция

Физика

В квантовой механике уравнение Шредингера для сколько-нибудь реалистических систем невозможно решить точно, в квадратурах. Поэтому здесь создано большое количество приближенных методов исследования. Мощнейший из них - теорию возмущений - мы рассмотрим позже.

Русский

2014-09-12

363 KB

0 чел.

Л Е К Ц И Я  12

КВАЗИКЛАССИЧЕСКОЕ ПРИБЛИЖЕНИЕ

В квантовой механике уравнение Шредингера для сколько-нибудь реалистических систем невозможно решить точно, в квадратурах. Поэтому здесь создано большое количество приближенных методов исследования. Мощнейший из них - теорию возмущений - мы рассмотрим позже. А сейчас обсудим квазиклассическое приближение, которое представляет и самостоятельный интерес, так как устанавливает связь квантовой механики и классической. Как мы увидим, квазиклассическое приближение (ККП) справедливо в случаях, когда де-бройлевские длины волн частиц малы по сравнению с характерными масштабами системы. Это аналогично тому, что волновая оптика в пределе малых длин волн переходит в геометрическую.

Рассматриваем стационарное одночастичное уравнение Шредингера в координатном представлении:

 2 (r) +V(r) (r) = E(r)

и делаем в нем формальную подстановку (замену функции)

 (r) = A.

Учитывая, что

= (S)A,   2 = (2S)A  (S)2A,

получим для S следующее уравнение:

 (S)2  2S +V  E = 0.

Если отбросить второй член, то получим

 (S)2 +V = E.

Но это есть не что иное, как классическое уравнение Гамильтона - Якоби для функции действия S0 (укороченное). Приближение справедливо при

 S2  2S.

Но в классике S=p, а потому

 p2>>divp(x),

или, в одномерном случае

 p2 >>   1 >>  =  =   ,

где    де-бройлевская длина волны. Таким образом, переход возможен при условии

  << 1,

т.е. когда длина волны де Бройля мало меняется на протяжении системы. Можно сказать и иначе. Учитывая, что

 p(x) =,

получим

 1 >>  =      << 1.

Приближение справедливо, когда сила невелика (потенциальная энергия достаточно плавная функция координат), а импульс не слишком мал. В частности, приближение не работает вблизи точек поворота E =V(x), где p = 0, а = . Это будет важно в дальнейшем.

Последующее рассмотрение проводим для одномерного движения, когда уравнение для функции S(x), входящей в волновую функцию

 (x) = A,

имеет вид

 iS  S2 + 2(E V) = 0.  ()

Решение этого точного уравнения будем искать в виде ряда по :

 S(x) = S0(x) +S1(x) +2S2(x) + ....

Этот ряд сходится плохо, и отыскание поправок высшего порядка малости по  затруднено. К тому же  разложение разумно (т.е. может получать эффективные результаты) только при обсужденном выше условии. Ограничимся поправками, линейными по , т.е. ищем S в виде

 S(x)  S0(x) + S1(x) .

Подставляем в (), отбрасывая члены с 2:

 2(E V)  S02 +(iS0  2S0S1) = 0.

Это должно быть тождеством, а потому должны равняться нулю отдельно члены без  (с 0) и члены с  (1):

 2(E V)  S02 = 0,     iS0   2S0S1 = 0.

Собственно говоря, именно это приближение и называется квазиклассическим. Оно же именуется методом ВКБ (Вентцеля - Крамерса - Бриллюэна).

Уравнение нулевого приближения есть уравнение Гамильтона - Якоби, из которого

 S0 =   = p,

где

 p(x) =   

классический импульс.

Итак, в нулевом приближении

 S0(x) = |p(x)|dx.

Здесь x0 - координата некоторой фиксированной точки на прямой. В качестве нее удобно выбирать классическую точку поворота, где

E =V(x0).

Заметим, что в классически доступной области I импульс вещественен, а в классически недоступной области II он является чисто мнимым.

Уравнение для S1 переписываем в виде

 S1 = i/2(S0’’/S0)  i/2(lgSo).

Интегрируя его, находим

 S1 = i/2lgS0 = i/2(lgp)

(постоянная интегрирования несущественна, и ее опускаем). Таким образом, в приближении ВКБ

 S(x) = pdx+iln,

и

 (x) = .

Обращаясь к картинке, запишем этот результат отдельно в областях I (x<x0, классически доступная) где импульс вещественен, и II (x>x0, классически недоступная), где импульс мнимый:

I.I(x) = ,          p(y) = ,

или

I(x) = a sin (z +) +bcos(z +),        z(x) |p(y)dy|;

II. II(x) = ,      p(y) = = ip(y),

или

II(x) = [Ae-|z|+Be|z|],     |p(y) =,     z  |p(y)|dy.

В эти решения входят 6 неизвестных вещественных констант: a, b, , , A, B. Свяжем их между собой, сшивая решения для областей I и II.

Но здесь есть значительная трудность. В точке поворота p(x0)=0, и квазиклассическое приближение здесь не работает (см. выше), т.е. выписанные функции не являются решениями задачи даже приближенно. Способ таков: вводим промежуточную область III, в которой решаем уравнение Шредингера точно, и именно это решение его концами сшиваем с соответствующими квазиклассическими решениями. Область III считаем весьма узкой, что позволяет аппроксимировать потенциал V(x) линейной функцией, разлагая его в ряд Тейлора:

V(x) V(x0) + (x  x0)V(x)  E +(xx0),        = V(x).

Тогда точное (в смысле не квазиклассическое) уравнение Шредингера в области III будет записываться как

 (x)   (xx0) (x) = 0.

После замены переменной

  = 13(xx0)

оно примет вид

  -  = 0.

Это есть уравнение Эйри, и оно имеет два независимых решения:

u1() = ,    u2() = .

Теперь будем сшивать решения по границам областей I - III и III - II.

  1.  При x>x0  за счет 2 в знаменателе имеем >>1, и для функций Эйри можно воспользоваться известными из справочников асимптотическими выражениями (кстати, они получаются методом перевала):

 u1  , u2 = .

  1.  При x<x0 по тем же причинам <<-1, и асимптотики таковы:

 u1  ,   u2  .

Первую асимптотику будем сшивать с II(x), а вторую - с I(x).

(а) В области I x=x0  (>0,   0) подставляем в p(x) потенциал

 V(x) = (x0x)

разлагаем в ряд Тейлора и вычисляем

 z = p(y)dy   2/3 3/2.

(б) В области II x=x0+, и аналогичные выкладки дают

 z  2/3 3/2.

Теперь, задавшись решением в I, сшиваем его с асимптотикой (2), находим асимптотику того же решения в (1) и сшиваем с решением II. Решая возникающие алгебраические уравнения, получим

 A = a/2,    B = b,     =  = .

В итоге получим следующее квазиклассическое решение:

 (x) = a1(x) + b2(x),

где

1(x) = ;       2(x) =

При этом константы a и b находятся из общих граничных условий (скажем, ограниченность на бесконечности) и условий нормировки. Полученные решения справедливы, вообще говоря, только вне - окрестности точки поворота. Но если на интервале 2 укладывается много длин волн де Бройля, то выражениями можно пользоваться во всей области.

КОЭФФИЦИЕНТ ПРОХОЖДЕНИЯ

В качестве примера применения метода ВКБ вычислим коэффициент прохождения частицы через барьер произвольной формы (а не прямоугольной). При этом считаются выполненными условия квазиклассичности, т.е. барьер - достаточно плавный. Это значит, помимо всего прочего, что он широкий, и что энергия много меньше высоты барьера. Идея: задаем волновую функцию в области I в виде суперпозиции падающей и отраженной волн, «протягиваем» ее по полученному рецепту в область II, а затем по несколько модифицированному рецепту в область III и требуем, чтобы там не было отраженной волны.

I. I(x) = sin (z +) +cos(z +)

   пад(x) + отр(x).

 z = p(y)dy,     B0 = 1/2(b+ia),     B1 = 1/2(bia)

II. II(x) =

|z| = |p(y)dy|,     ;

  

 II(x) = 

 

III. III (x) = ,

  

Но в области III не должно быть отраженной волны (по постановке задачи - частицы падают из -, частично отражаются, а частично уходят на +). Поэтому

 = 0     = -i;

 ;

 B0=1/2 (b+ia) = (1/4 e-2 +1)

 B1 = 1/2 (b-ia) = (1/4 e-2 - 1).

Таким образом, все коэффициенты выражаются через a, который можно (но в данной задаче не нужно) найти из условия нормировки:

 b =

 

 .

Здесь следует выделить B0 (коэффициент при падающей волне) и  (коэффициент при отраженной волне). Вводим коэффициенты прохождения и отражения

 D = ,      R = ,

где токи выражаются через соответствующие волновые функции:

 j = .

Подставляя найденные коэффициенты получим

 D = ,

 R = 

Но здесь произошло некоторое превышение точности. В частности, D+R1, в противоречии с сохранением вероятности (куда делись частицы?). Однако нужно учесть, что

  = >>1.

Тогда равенство D+R=1 , будет выполняться с точностью до слагаемых типа exp(-2) и exp(-4), которые тем самым нужно отбросить. Их нужно отбросить и в выражении для D, для которого окончательно получаем

 D = e-2 = exp.

Это весьма важная формула, и она часто применяется - например, при анализе альфа-распада ядер, механизм которого, как известно, туннельный.

FILENAME lecture12.doc

-  PAGE 119 -


 

А также другие работы, которые могут Вас заинтересовать

5483. Атмосфера. Ее происхождение и ионизация 424.5 KB
  Атмосфера Атмосфера - воздушная оболочка Земли (самая внешняя из земных оболочек), находящаяся в непрерывном взаимодействии с остальными оболочками нашей планеты, постоянно испытывающая влияние космоса и прежде всего влияние Солнца. Масса атмос...
5484. С# и объектно-ориентированное программирование 236.5 KB
  С# и объектно-ориентированное программирование Формальное определение класса в С# Класс в С#, как и в других языках программирования, - это пользовательский тип данных (userdefinedtype, UDT), который состоит из данных (часто называе...
5485. Предмет и метод экономической науки. Основные этапы развития экономической мысли 41 KB
  Предмет и метод экономической науки. Основные этапы развития экономической мысли. Цели изучения темы: получить представление об экономической деятельности и экономических отношениях, о предмете и методе экономической науки, проследить основные этапы...
5486. История становления и развития социологии 148 KB
  История становления и развития социологии Предыстория социологии. Формирование основ социологической науки в трудах О.Конта (1798-1857). Классический период развития социологии. Социально-философские учения античности. Социал...
5487. Развитие ребенка дошкольного возраста как субъекта детских видов деятельности 52 KB
  Развитие ребенка дошкольного возраста как субъекта детских видов деятельности. Понятие субъекта деятельности. Показатели проявления субъектной позиции детьми дошкольного возраста в деятельности. Особенности освоения ребенком-дошкольником...
5488. Организация противоэпидемических и дезинфекционных мероприятий в очагах инфекционных заболеваний 79.5 KB
  Организация противоэпидемических и дезинфекционных мероприятий в очагах инфекционных заболеваний План: Определение понятий природный и эпидемический очаг. Роль амбулаторно-поликлинических учреждений в системе ПЭМ. Эпидемиологическо...
5489. Основные этапы развития экономической мысли 76.5 KB
  Основные этапы развития экономической мысли. Экономическая мысль Древнего мира и средневековья. Экономическая мысль нерегулируемых рыночных отношений. Экономическая мысль регулируемых рыночных отношений. Экономическая мысль...
5490. Основы молекулярной генетики 175.5 KB
  Основы молекулярной генетики Вопросы Строение и функции белка. Структурная модель ДНК Дж. Уотсона и Ф. Крика. Транскрипция. Процесс трансляции у эукариот. Сравнительная характеристика ДНК и РНК. Генетический код. Свойства генетического ко...
5491. Пиодермии. Чесотка. Педикулез 70 KB
  Пиодермии. Чесотка. Педикулез Определение Этиология Тактика среднего медицинского работника при данных заболеваниях Принципы лечения Особенности ухода за пациентами Диспансеризация Профилактика Пиодермия. Че...