67563

ТЕОРИЯ ВОЗМУЩЕНИЙ

Лекция

Физика

Значительный интерес представляет как бы промежуточный случай. Уровни не вырождены (это не случай 2), но они очень близко расположены, так что не выполняется необходимое условие применимости теории возмущений (т.е. это и не случай 1).

Русский

2014-09-12

295.5 KB

4 чел.

Л Е К Ц И Я  13

ТЕОРИЯ  ВОЗМУЩЕНИЙ

Теория возмущений - один из самых мощных приближенных методов в квантовой механике. Применяется, когда гамильтониан можно представить в виде

  = 0+

(считаем систему стационарной, так что = 0), где «невозмущенный» гамильтониан таков, что известны его собственные функции и энергетический спектр, т.е. умеем решать задачу

 

 m = mm,

а  - оператор возмущения, который в каком-то смысле мал по сравнению с 0 (в каком именно, уточним ниже). Собственные функции n  и собственные значения En (энергетический спектр) полного гамильтониана  ищутся в виде разложений в ряды по степеням возмущения. Ниже предполагается, что спектры 0 и  - дискретные. Удобно ввести параметр , т.е. гамильтониан

 () = 0+,     0    1.

Очевидно, что (0)=0 - невозмущенный гамильтониан, а () =  - реальный полный гамильтониан. Следует различать два случая - энергетический спектр невозмущенной задачи m простой (невырожденный) и энергетический спектр m вырожденный. Рассмотрим эти случаи отдельно.

Теория возмущений на невырожденных уровнях

Итак, пусть m - система ортонормированных собственных функций невозмущенного гамильтониана 0 с невырожденными собственными значениями m :

 0m = mm,     n m = mn,

и пусть n - собственная функция оператора () с собственным значением En():

()n() = En()n()        (0+)n() = En()n().

Ищем решения в виде степенных рядов по параметру :

 En() = En(0) + En(1) + 2En(2) + ...

и

 n() = n(0)() + n(1)() + 2n(2)() + ...

Подставляем разложения в точное уравнение Шредингера:

0 + )(n(0)  + n(1)  + 2n(2)  + ...) =

= (En(0) + En(1) + 2 En(2) +...)(n(0)  + n(1)  + 2n(2)  + ...).

Приравнивая члены слева и справа с одинаковыми степенями , получим бесконечную систему зацепляющихся уравнений:

0n(0) = En(0)n(0)          (0)      

 

0n(1)  En(0)n(1)  En(1)n(0) = n(0)    (1)           

0n(2)  En(1)n(2)  En(2)n(0) = En(1)n(1) n(1)    (2)

 . . . . . . . . .

По условию решение нулевой задачи известно, причем функции n(0) образуют ортонормированный базис:

n(0) = n,   En(0) = n;  n m = mn,  = m.

Разлагаем по этому базису искомые поправки к волновым функциям:

n(1) = m      (1);  n(2) =m ;  (2 )

и подставляем разложения в уравнения (1) и (2):

 (m  n)m  En(2)n = n

и

(m  n)m  En(2)n = En(1)m m.

Умножим обе части каждого уравнения скалярно слева на k и учтем ортонормированность волновых функций нулевого приближения:

 (m  n)kn   En(1)kn = k n 

и

(m  n) km  En(2)kn = En(1)km  km.

Суммируя с помощью символа Кронекера и вводя матричные элементы типа

 m n  Fmn  ,

получим

 Cnk(1)(kn) En(1)kn = - Vkn    (1)

и

 Cnk(2)(kn) En(2)kn = En(1)Cnk(1) Vkm.      (2)

Выполняем вычисления в первом порядке теории возмущений. Полагая в (1) k=n, найдем первую поправку к энергии:

 En(1) = Vnn.

Считая теперь kn, получим

 Cnk(1) =   (kn),    ()

т.е. поправка к волновой функции есть

 n(1) = Cnn(1) n +m.

Коэффициент Cnn(1) остается произвольным, но для дальнейшего это несущественно, ибо самое главное - не волновые функции, а уровни энергии, а туда Cnn(1) не войдет и во втором порядке теории возмущений. (Исходя из условия нормировки, можно показать, что Cnn(1) является чисто мнимым. И не ограничивая общности, его можно положить равным нулю).

Вычисляем теперь энергию во втором порядке теории возмущений. Для этого полагаем в (2 ) k=n и подставляем туда ():

 En(2) = En(1)Cnn(1) + Cnn(1)Vnn +Vnm .

Так как En(1)=Vnn, первые два члена взаимно уничтожаются (!), и мы получаем

 En(2) = =.

Отсюда видно, в частности, что во втором порядке теории возмущений поправка к энергии основного состояния всегда отрицательна, так как все m>0. Можно найти и волновую функцию во втором порядке теории возмущений, но как уже говорилось, она обычно интереса не представляет.

Окончательный итог: с точностью до членов второго порядка малости по возмущению энергетический спектр получается таким:

 En = n + Vn +,

где

 Vn = Vnn = n n.

Для обоснования метода теории возмущений нужно доказать сходимoсть получающегося ряда (реально разложение идет не по степеням , а по степеням  - величина есть просто вспомогательный параметр). Как правило, это чрезвычайно сложная задача, и ей посвящены многие математические исследования. Фактически часто проверяют лишь необходимое условие: поправка следующего порядка меньше поправки предыдущего порядка. При этом нередко ряды теории возмущений оказываются асимптотическими: разложение имеет смысл лишь до определенного члена, а учет следующих членов лишь ухудшает результат. Итак. Чтобы был справедлив второй порядок теории возмущений, должно быть

  << Vll.

Обычно считают все матричные элементы одного порядка величины, а поэтому необходимое условие применимости теории возмущений имеет вид

 Vnm << (n  m) .

Конечно, эта оценка грубая (например, все может испортить сумма). Но во всяком случае нарушение данного неравенства заведомо указывает на то, что теория возмущений неприменима.

Теория возмущений при наличии вырождения

Теперь рассмотрим ситуацию, когда энергетические уровни вырождены или расположены очень близко друг к другу. Остальной спектр может быть и непрерывным, и тогда нужно будет просто заменить сумму на интеграл. Но рассматриваемый уровень обязан быть изолированным и удаленным от всех остальных.

Для невозмущенного гамильтониана

 0m = mm.

Пусть нас интересует, что происходит с некоторым вырожденным уровнем с фиксированным номером n. В нулевом приближении ему отвечает S (кратность вырождения) линейно независимых функций, которые всегда можно выбрать ортонормированными:

 0n = nn,     nn = ,    , = 1,2,...,S.

Для точных волновых функций n и энергий En этого уровня имеем задачу

 (0+)n = En n.

Подставляя разложения

 n = n(0) + n(1) + ...

и

 En = n + En(1) + ...

в это уравнение и приравнивая члены при с одинаковыми степенями, получим систему уравнений (0), (1), (2), ..., выписанную выше. Нас будет интересовать первое приближение, т.е. уравнение (1):

 0n(1)  nn(1)  En(1)n(0) = n(0).     (1)

«Правильную» волновую функцию нулевого приближения ищем в виде линейной комбинации S произвольно найденных собственных функций n нулевого гамильтониана:

 n(0) = n.

Поправку n(1) к волновой функции первого порядка разлагаем по собственным функциям нулевого гамильтониана, выделив номер n:

 n(1) = n +m.

Подставляем эти выражения в уравнение (1), учитывая, что

 0n = nn,     0m = nm.

Имеем:

nn +m  nn + mm 

  En(1) n = n.

Умножаем обе части слева на n и учитываем, что

 nn = ,,       nm = 0 (mn).

Получим

 En(1) = nn n,

или

 (Vn  En(1))n = 0.            ()

Это есть система однородных линейных алгебраических уравнений в количестве S для отыскания S неизвестных коэффициентов n. Условие ее разрешимости приводит к секулярному уравнению

 det (n En(1) ) = 0

или, в явном виде .

Секулярное уравнение есть алгебраическое уравнение степени S для первой поправки к энергии n. Таким образом, эти поправки находятся как корни секулярного уравнения. Подставляя каждый из них в систему уравнений (), найдем соответствующий набор коэффициентов n, т.е. определим соответствующую волновую функцию нулевого приближения.

Если все корни En(1) секулярного уравнения разные, то единый ранее вырожденный уровень n расщепится на S подуровней, т.е. вырождение полностью снимется. Если среди корней имеются кратные, то вырождение снимется частично - среди подуровней некоторые будут вырождены, но степень вырождения каждого будет уже меньше S (если только секулярное уравнение не имеет всего один S-кратный корень). Возможно, вырождение снимется в  следующих порядках теории возмущений, но их не рассматриваем.

Близко расположенные уровни

Значительный интерес представляет как бы промежуточный случай. Уровни не вырождены (это не случай 2), но они очень близко расположены, так что не выполняется необходимое условие применимости теории возмущений (т.е. это и не случай 1). Здесь также можно развить теорию возмущений, причем делается это методом, близким к случаю 2. Допустим, что имеется два близких уровня 1 и 2 с волновыми функциями 1 и 2:

 01,2 = 121,2.

Волновую функцию нулевого приближения ищем в виде линейной комбинации

 (0) = 11 + 22.

Подставляя ее в точное уравнение Шредингера

  = E         (0 +  E) = 0,

получим

 (0 +  E)(11 + 22) = 0.

Умножая слева сначала на 1, потом на 2, придем к системе уравнений

 (11 +V11  E)1 +V12 2 = 0

 V211 + (2 +V22  E)2 = 0.

Условие разрешимости дает

 .

Решая это квадратное уравнение, найдем два значения энергии

E = 12(1 + 2 +V11 +V22) 12 .

Если уровни далекие, т.е.

 12 >> V12,

то получим результаты обычной теории возмущений (п.1):

 E+ = 1 +V11 +

 E= 2 +V22+.

Сейчас более интересен противоположный случай близких уровней

 12 << V12.

Тогда будем иметь

 E = 12(1 + 2 +V11 +V22) .

Из системы уравнений для 1 и 2 видно, что их отношение равно

 .

Подставляя сюда значения E+ и E и вводя обозначение

 ,

получим соответственно

   ctg ,       tg.

Таким образом, нормированные волновые функции состояний с энергиями E+ и E имеют вид

+ = cos1 + sin2,         = sin1 + cos2.

Если уровни далекие, то   0, и

 +  1,           2,

что вполне естественно (+, - функции нулевого порядка). Если же уровни близкие, то   2, и исходные волновые функции входят в «правильные» с равными весами:

 + = (1 + 2),      _ = (1  2).

 

FILENAME lecture13.doc

-  PAGE 127 -


 

А также другие работы, которые могут Вас заинтересовать

65349. УДОСКОНАЛЕННЯ ПРОТИРАЛЬНОГО ОБЛАДНАННЯ ПІДПРИЄМСТВ ХАРЧУВАННЯ 195 KB
  Дотепер не досліджені зусилля що виникають на робочих органах протиральних машин підприємств харчування в процесі обробки різних харчових продуктів і не визначено комплексний вплив на технічні характеристики протиральних машин...
65350. ВИКОРИСТАННЯ ПОЖИВНИХ РЕЧОВИН ТА ПРОДУКТИВНІ ЯКОСТІ МОЛОДНЯКУ КРОЛІВ ЗА РІЗНИХ РІВНІВ ПРОТЕЇНУ ТА ЛІЗИНУ В КОМБІКОРМАХ 277.5 KB
  Співвідношення поголівя самців і самок у кожній з груп становило 1:1 10 самців і 10 самок яких утримували окремо. При формуванні групаналогів враховували вік стать живу масу і походження тварин.
65351. Технологічна спадковість в процесах листового штампування при створенні безпечних конструкцій 7.94 MB
  Для досягнення поставленої мети були сформульовані такі завдання: розробити експериментально-розрахунковий метод визначення енергії пластичного деформування листових матеріалів в процесах холодного штампування а також енергопоглинання...
65352. МАРГІНАЛЬНА ПОВЕДІНКА ОСОБИ: ТЕОРЕТИКО-ПРАВОВИЙ АСПЕКТ 142 KB
  Проблема маргінальної поведінки особи та маргіналізації суспільства виступає постійним явищем існування людської історії а її гострота безпосередньо повязана з тими суспільними процесами які притаманні певній соціальній спільності...
65353. МІКРОКОМПОНЕНТНИЙ СКЛАД ПИТНИХ ПІДЗЕМНИХ ВОД ВОДОЗАБОРІВ МАЛИХ МІСТ ХАРКІВЩИНИ 1.21 MB
  Техногенне навантаження на навколишнє середовище в цілому та геологічне середовище, зокрема, відноситься до важливих екологічних проблем. Однією з таких актуальних проблем є вплив техногенного навантаження на геохімічний стан підземних вод...
65354. ОЗДОБЛЮВАЛЬН МОДИФІКОВАНІ БУДІВЕЛЬНІ РОЗЧИНИ НА ОСНОВІ БІЛОГО ПОРТЛАНДЦЕМЕНТУ 849 KB
  При використанні сучасних розчинів які мають досить значну номенклатуру за рахунок широкого впровадження технології сухих будівельних сумішей модифікованих СБСМ існує певне обмеження у застосуванні складів на основі білого портландцементу ПЦБ для оздоблення...
65355. АНАЛІЗ ТА МЕТОДИ УПРАВЛІННЯ РЕЖИМАМИ ЕЛЕКТРИЧНИХ СИСТЕМ З ГНУЧКИМИ ПЕРЕДАЧАМИ ЗМІННИМ СТРУМОМ 262.5 KB
  Сьогодні в світі електроенергетики спостерігаються протиріччя між ринковими економічними відносинами та надійністю режимів роботи електричних систем. Економічні перетворення, що відбуваються у вітчизняній електроенергетиці...
65356. ГІДРОІМПУЛЬСНИЙ ПРИВОД МЕМБРАННОГО НАСОСНОГО АГРЕГАТУ ДЛЯ ПЕРЕКАЧУВАННЯ ВИСОКОВ’ЯЗКИХ, АГРЕСИВНИХ ТА АБРАЗИВОВМІСНИХ СЕРЕДОВИЩ 235.5 KB
  Використання гідроімпульсних приводів для насосних агрегатів у вищезазначених галузях промисловості суттєво поліпшить вихідні параметри та характеристики вже морально застарілих та малоефективних приводів насосів а саме...
65357. Удосконалення методу оцінки характеристик вихідного сигналу ферозонда при контролі дефектів суцільності феромагнітних виробів 675.5 KB
  Також існує необхідність у методиці розрахунків вихідного сигналу ферозонда що вимірює поле дефекту йдеться про методику яка могла б урахувати не тільки параметри ферозонда але й вплив на функцію перетворення ферозонда...