67564

ВАРИАЦИОННЫЙ МЕТОД

Лекция

Физика

Ищем функции доставляющие функционалу экстремум при дополнительном условии нормировки. Таким образом вместо того чтобы решать уравнение Шредингера можно искать функции которые доставляют экстремум функционалу J. Возьмем собственные функции гамильтониана...

Русский

2014-09-12

239 KB

1 чел.

Л Е К Ц И Я 14

ВАРИАЦИОННЫЙ  МЕТОД

Еще один мощный метод нахождения низших энергетических уровней - вариационный метод. Рассмотрим функционал

 J(,) =  = (x) (x),

где x – весь набор переменных. Функции предполагаются нормированными:

  = (x) (x) = 1.

Решаем задачу на условный экстремум, т.е. ищем функции, доставляющие функционалу экстремум при дополнительном условии нормировки. Используем метод Лагранжа, т.е. требуем

 (x) (x)   (x) (x) = 0,

или

 (  ) + (  ) = 0.

Поскольку  и  считаются независимыми вариациями, то экстремумы достигаются на функциях , удовлетворяющих уравнениям

  = ,     = .

Видим, что условие экстремума есть стационарное уравнение Шредингера, если отождествить = E. Поскольку  - эрмитов оператор, то = , и уравнения для и эквивалентны - получаются друг из друга операцией комплексного сопряжения ( - вещественный оператор). Таким образом, вместо того, чтобы решать уравнение Шредингера, можно искать функции, которые доставляют экстремум функционалу J.

Покажем, что абсолютный минимум функционалу J дает волновая функция основного состояния. Возьмем собственные функции гамильтониана

 n = Enn,         nm = nm,

и разложим по ним произвольную функцию :

  = ann.

Из условия нормировки следует, что

 |an|2 = 1.

Подставляем разложение в функционал:

J =  =anamnm = anam Emnm  = En|an|2.

Пусть E0 - энергия основного состояния, тогда En   E0, и

 J = En|an|2  E0|an|2 = E0       JE0.

Но, если = 0, то

 J = E0.

Таким образом, функционал J имеет минимум, и он достигается именно на функции 0. Это его минимальное значение равно E0 , что и составляет основу вариационного метода при отыскании энергии основного состояния.

На вариационный метод позволяет найти и следующие энергетические уровни. Пусть нашли E0 как минимум функционала, достигаемого на функции =0. Будем искать энергию E1 и функцию 1 из условия минимума функционала при дополнительных ограничениях

  = 1,     0 = 0.

Доказательство почти такое же, как в предыдущем случае. Имеем

 J =  = En|an|2,

где по-прежнему

 |an|2 = 1,

но теперь из условия 0=0 следует a0=0, и потому

 J = En|an|2 E1|an|2 = E1.

Таким образом,

 J  E1,

причем минимум достигается на =1.

Высшие энергетические уровни находятся аналогично. Значение En находится как минимум функционала на функциях, подчиненных условиям

  = 1,   n = 1 = ... = n-1 = 0.

До сих пор рассмотрение было точным, но решение вариационной задачи обычно не проще, а сложнее непосредственного решения уравнения Шредингера. Но есть еще приближенный метод, и очень эффективный, - прямой вариационный метод, или метод Ритца. В этом методе экстремумы ищутся не на всем множестве квадратично интегрируемых функций, а только на пробных функциях, принадлежащих весьма узкому классу. А именно, выбирают функции какого-то заданного вида, но зависящие от некоторого числа параметров:

  = (x, , ...) .

Тогда и функционал

 J =  =(x, , ...) (x, , ...)dx = J(, , ...),

будет функцией этих параметров, и отыскание его экстремума сводится к отысканию экстремума функции нескольких переменных , , ..., а это весьма простая задача из области обычного математического анализа. Если пробные функции заранее нормированы (а это всегда делают), то минимум будет находиться из решения системы обычных уравнений

  = 0,      = 0,...,

откуда получаются значения 0, 0,..., для которых, как следует из строгого рассмотрения, всегда

 J(0,0,...)  E0.

Если класс пробных функций выбран удачно, то можно приближенно положить

 E0 = J(0,0,...),        0 = (x0,0,...).

Главное искусство, таким образом, выбор подходящего класса пробных функций. Здесь нужно использовать всю наличную информацию, дополняя ее интуицией. Следующие уровни находятся, как описано выше. Функция берется из того же класса, но не только нормированной, но и ортогональной к приближенной функции 0 основного состояния, уже найденной. Практически метод используют для нахождения нескольких нижних уровней, так как с ростом номера уровня резко возрастают вычислительные трудности из-за множества дополнительных условий.

Пример. Попробуем найти энергию основного состояния атома водорода с гамильтонианом

  =   .

В основном состоянии l=0, а потому в сферических координатах волновая функция зависит только от r , но не от и :

  = (r).

Она должна очень быстро стремиться к нулю при r  0, а потому можно попытаться положить

  = Pn(r)e r,

где Pn(r) - некоторый полином, а - варьируемый параметр. Но в вариационном исчислении доказывается, что функция, доставляющая минимум функционалу, не может иметь нулей в конечной области (а функция, доставляющая (n+1)- й экстремум, имеет n нулей - это теорема об узлах). Поэтому для волновой функции основного состояния полином Pn  должен быть просто константой, и множество пробных функций есть

 (r) = Аe r,     >0.

Дальше будут полезны интегралы

 In() ,

которые получаются дифференцированием по основного интеграла

 I0() .

Находим константу А из условия нормировки:

1 =dV =r2drd(r) (r) = 4A2r2dre-2r = 4A2I2(2) =

= 4A2= ,

откуда

 А =   (r) = e r.

Вычисляем функционал J(). Учитывая, что

 2 (e r) =  e r + 2e r

получим (элементарные выкладки с использованием In опускаем)

J() =  e r()e r = .

Ищем минимум

 0 =,

где а-радиус Бора. Для приближенной волновой функции основного состояния получаем

 0(r) = .

Энергия основного состояния приближенно вычисляется как J(0):

 E0 = J(0) = ,

т.е.

 E0 = .

На самом деле результаты получились точными. Это потому, что слишком уж хорошую выбрали пробную функцию. Если бы взяли

 (r) = А e r,

то результаты получились бы значительно хуже.

В качестве полезного упражнения предлагается решить аналогичную задачу для одномерного гармонического осциллятора

  = ,

взяв как раз пробные функции вида

 (x) =А e x,    >0.

ОСНОВЫ КВАЗИРЕЛЯТИВИСТСКОЙ КВАНТОВОЙ ТЕОРИИ

Будем искать релятивистские поправки к нерелятивистской квантовой физике. В последовательной релятивистской квантовой теории возможны процессы рождения частиц, которые в рамках нашего курса не могут быть учтены, почему мы и говорим не о релятивистской квантовой теории, а о релятивистских поправках к нерелятивистской квантовой теории, или о квазирелятивистском приближении.

Дальше будет очень полезным следующий эвристический способ «вывода» уравнения Шредингера. Берем классический гамильтониан свободной частицы

 H =

заменяем в нем классические величины по правилу

,         p i

и действуем полученными операторами на волновую функцию:

 i.

Ясно, что это уравнение не обладает свойством релятивистской инвариантности. При переходе к другой системе отсчета энергия и квадрат импульса преобразуются по-разному. В уравнении Шредингера стоит первая производная по времени, но вторые производные по координатам, а время и пространственные координаты в теории относительности должны быть формально равноправны.

Напомним основные положения специальной теории относительности (СТО). Пространство Минковского состоит из 4-векторов

  = (x0,x1,x2,x3),

где

 x0 = ct,    а     x1,x2,x3 = x

есть обычный 3-вектор. Верхние индексы отвечают контравариантным компонентам векторов. Можно перейти к ковариантным векторам и наоборот по правилу

 x = gx ,     x = gx ,

где g - метрический тензор:

 g = g = .

Скалярное произведение в пространстве Минковского вводится как

 () = y0x = gyx = gyx = x0y0 (x,y),

и оно является 4-скаляром, или инвариантом преобразований Лоренца. В частности, скалярный квадрат самого 4-вектора   записывается как

 ()2 = (x0)2  x2.

Преобразования Лоренца есть как раз линейные преобразования, сохраняющие скалярные квадраты 4-векторов:

 x = x, (, ) = (,)

откуда нетрудно получить основное свойство матрицы Лоренца

 gT = g.

Преобразования Лоренца описывают переход от одной инерциальной системы отсчета к другой (вращения и движения, но не трансляции). В частности, если штрихованная система отсчета движется относительно исходной вдоль общей оси x1=x со скоростью V, то матрица Лоренца такова:

  = ,         .

В СТО энергия E и импульс p объединяются в 4-вектор

  = (p0,p1,p2,p3),

где

 p0 = ,     (p1,p2,p3) = p.

При преобразованиях Лоренца

 p p = p.

Квадрат 4-импульса есть инвариант:

 p p = ()2  p2 = 2c2 = inv,

где - масса частицы (в последовательной теории это есть ее определение!). Преобразование Лоренца сохраняет 4-скалярные произведения, в частности

 px = px.

Вернемся к квантовой теории. Начали с подстановок

 H   i,          p  i,

которые теперь можно объединить в ковариантную подстановку

 p  i,        .

В частности, если взять релятивистское выражение для энергии

 E =

и сделать в нем эти подстановки, получим нечто вроде релятивистского обобщения уравнения Шредингера

 i.

Но здесь непонятно, что такое корень из оператора. Правда, его можно попытаться разложить в ряд Тейлора, но тогда возникнут производные сколько угодно высокого порядка - тоже нехорошо. Связь  с (r) не будет локальной, и фактически выписанное уравнение, как можно показать, есть интегральное уравнение. От такого уравнения отказываемся, так как и соответствующая теория пока не построена (формально ее можно построить и некие ее результаты даже используются, но ничего хорошего на этом пути не получается).

Будем действовать по другому, исходя из выражения не для самой энергии, а для ее квадрата:

 E2 = p2c2 + 2c4.

file:///web/5fan/public_html/www/files/13/5fan_ru_67564_38cb56c06ec51b6c3368efd3395594b0.doc

- ? -


 

А также другие работы, которые могут Вас заинтересовать

39924. Пошук знань 93 KB
  Інструменти для корпоративних масивів Отже на жорстких дисках окремих компютерів або на серверах в корпоративних мережах накопичуються величезні масиви документів навігація в яких із зрозумілих причин утруднена. Для забезпечення комфортності роботи із такими масивами документів зазвичай намагаються класифікувати розподілити їх по тематичних папка або каталогах. Поряд з пошуком великого значення набувають завдання угрупування тематично близьких документів автоматичного реферування перекладу виявлення ключових понять проведення...
39925. Що таке WEB 2.0 350.5 KB
  0 Усього лише декілька років тому цього терміну не існувало в природі зараз пошукова система Google видає мільйони посилань на документи де згадується поняття Web 2. Він пророчив WiFi пошукову систему Google і книжковий магазин mzon при цьому студенти які зробили Yhoo пропонували купити у них цей сайт за мільйон але О'Рейллі поскупився. Google Ще недавно це була просто фантастична success story і саме яскраве досягнення доткоміндустрії а зараз взагалі невідомо як до неї ставитися: ще трохи і Google все охопить. Google випустив...
39926. СЕМАНТИЧНИЙ ВЕБ 122 KB
  Тому подальший розвиток Internet багато вчених повязують з концепцією Семантичного Web Semntic Web яка багато в чому завдяки уніфікації обміну даними імовірно дасть можливість інтегрувати в Internet навіть обєкти реального світу Концепцію Семантичного Web висунув Тім БернерсЛі один з основоположників World Wide Web і голова консорціуму W3C на міжнародній конференції XML2000 що відбулася у 2000 році у Вашингтоні. В процесі реалізації концепції Семантичного Web отримали широкий розвиток синтаксичні методи представлення інформації...
39927. Соціальні мережі 100.5 KB
  З цієї зачатковою нейромережі виріс колосальний коллаборативный інтерфейс обєднуючий всю цивілізацію механізм здібний до пізнання і відчуття могутніший ніж всі попередні винаходи. Але не тільки: Інтернет виступив майданчиком на якому люди об'єднані в тісні взаємодіючі мережі змогли користуючись лише віртуальними сервісами змінити реальність. Іншими словами віртуальне нарешті вийшло за межі комп'ютерної мережі і стало реальним знайшло відчутні риси політичну потужність здатну управляти реальністю.
39928. Блог 235.5 KB
  Підтримка російського WordPress. Тут ви знайдете найсвіжішу версію російського WordPress. Форум підтримки російського WordPress. Розсилка Використовуєм WordPress для створення свого сайту .
39929. Вікіпедія – модель обміну знаннями 48.5 KB
  Проте ситуація склалася набагато краще причому не тільки для окремо узятої Вікіпедії але і для модного тренда в цілому.0 то завжди називають вікі – це один з його елементів. Кінець 80 – х років минулого століття вважають початком розробки першої в світі вікітобто тоді коли Каннінгем працював над проектом HyperCrd.
39930. НОВИННІ ІНФОРМАЦІЙНІ ПОТОКИ В ІНТЕРНЕТ 45.5 KB
  Найпоширеніший формат отримав назву RSS що означає Relly Simple Syndiction Rich Site Summry хоча спочатку він називався RDF Site Summry. Спочатку RSS створювався компанією Netscpe для порталу Netcenter як один з перших XMLдодатків але потім став використовуватися на багатьох інших сайтах. Живі журнали що працюють в Інтернет використовують RSS як інструменту оперативного представлення своїх оновлень. Специфікації окремих версій формату RSS приведені на таких Webсторінках: RSS 0.
39931. Загальна характеристика масовоінформаційної діяльності 144.5 KB
  Професіональної а не професійної тобто комунікації яка відбувається не у певній професійній сфері а на високому рівні майстерно як належить професіоналові знавцю правил спілкування й мовлення. Отже передбачається що ви після вивчення цієї дисципліни та багатьох інших протягом 45 років маєте стати висококваліфікованими фахівцями з питань масової комунікації. Як бачимо ідея єдності об єднання зв язку зі спільнотою є визначальною для поняття комунікації або спілкування.
39932. ПРАВОВІ ЗАСАДИ ДІЯЛЬНОСТІ УКРАЇНСЬКИХ МАС-МЕДІА 142.5 KB
  Нормою стали дотації і спонсорські вкладення у ЗМІ за так зване інформаційне забезпечення ангажованість видань і телерадіопрограм порушення етичних норм серед журналістів. Основна частина населення країни близька до того що незабаром буде позбавлена доступу до друкованого слова а отже і до інформації про соціальноекономічне політичне і духовне життя України про події за рубежем. Крім того у декларації зазначається що “згідно зі ст. 19 Загальної декларації прав людини започаткування підтримка та зміцнення незалежної...