67564

ВАРИАЦИОННЫЙ МЕТОД

Лекция

Физика

Ищем функции доставляющие функционалу экстремум при дополнительном условии нормировки. Таким образом вместо того чтобы решать уравнение Шредингера можно искать функции которые доставляют экстремум функционалу J. Возьмем собственные функции гамильтониана...

Русский

2014-09-12

239 KB

1 чел.

Л Е К Ц И Я 14

ВАРИАЦИОННЫЙ  МЕТОД

Еще один мощный метод нахождения низших энергетических уровней - вариационный метод. Рассмотрим функционал

 J(,) =  = (x) (x),

где x – весь набор переменных. Функции предполагаются нормированными:

  = (x) (x) = 1.

Решаем задачу на условный экстремум, т.е. ищем функции, доставляющие функционалу экстремум при дополнительном условии нормировки. Используем метод Лагранжа, т.е. требуем

 (x) (x)   (x) (x) = 0,

или

 (  ) + (  ) = 0.

Поскольку  и  считаются независимыми вариациями, то экстремумы достигаются на функциях , удовлетворяющих уравнениям

  = ,     = .

Видим, что условие экстремума есть стационарное уравнение Шредингера, если отождествить = E. Поскольку  - эрмитов оператор, то = , и уравнения для и эквивалентны - получаются друг из друга операцией комплексного сопряжения ( - вещественный оператор). Таким образом, вместо того, чтобы решать уравнение Шредингера, можно искать функции, которые доставляют экстремум функционалу J.

Покажем, что абсолютный минимум функционалу J дает волновая функция основного состояния. Возьмем собственные функции гамильтониана

 n = Enn,         nm = nm,

и разложим по ним произвольную функцию :

  = ann.

Из условия нормировки следует, что

 |an|2 = 1.

Подставляем разложение в функционал:

J =  =anamnm = anam Emnm  = En|an|2.

Пусть E0 - энергия основного состояния, тогда En   E0, и

 J = En|an|2  E0|an|2 = E0       JE0.

Но, если = 0, то

 J = E0.

Таким образом, функционал J имеет минимум, и он достигается именно на функции 0. Это его минимальное значение равно E0 , что и составляет основу вариационного метода при отыскании энергии основного состояния.

На вариационный метод позволяет найти и следующие энергетические уровни. Пусть нашли E0 как минимум функционала, достигаемого на функции =0. Будем искать энергию E1 и функцию 1 из условия минимума функционала при дополнительных ограничениях

  = 1,     0 = 0.

Доказательство почти такое же, как в предыдущем случае. Имеем

 J =  = En|an|2,

где по-прежнему

 |an|2 = 1,

но теперь из условия 0=0 следует a0=0, и потому

 J = En|an|2 E1|an|2 = E1.

Таким образом,

 J  E1,

причем минимум достигается на =1.

Высшие энергетические уровни находятся аналогично. Значение En находится как минимум функционала на функциях, подчиненных условиям

  = 1,   n = 1 = ... = n-1 = 0.

До сих пор рассмотрение было точным, но решение вариационной задачи обычно не проще, а сложнее непосредственного решения уравнения Шредингера. Но есть еще приближенный метод, и очень эффективный, - прямой вариационный метод, или метод Ритца. В этом методе экстремумы ищутся не на всем множестве квадратично интегрируемых функций, а только на пробных функциях, принадлежащих весьма узкому классу. А именно, выбирают функции какого-то заданного вида, но зависящие от некоторого числа параметров:

  = (x, , ...) .

Тогда и функционал

 J =  =(x, , ...) (x, , ...)dx = J(, , ...),

будет функцией этих параметров, и отыскание его экстремума сводится к отысканию экстремума функции нескольких переменных , , ..., а это весьма простая задача из области обычного математического анализа. Если пробные функции заранее нормированы (а это всегда делают), то минимум будет находиться из решения системы обычных уравнений

  = 0,      = 0,...,

откуда получаются значения 0, 0,..., для которых, как следует из строгого рассмотрения, всегда

 J(0,0,...)  E0.

Если класс пробных функций выбран удачно, то можно приближенно положить

 E0 = J(0,0,...),        0 = (x0,0,...).

Главное искусство, таким образом, выбор подходящего класса пробных функций. Здесь нужно использовать всю наличную информацию, дополняя ее интуицией. Следующие уровни находятся, как описано выше. Функция берется из того же класса, но не только нормированной, но и ортогональной к приближенной функции 0 основного состояния, уже найденной. Практически метод используют для нахождения нескольких нижних уровней, так как с ростом номера уровня резко возрастают вычислительные трудности из-за множества дополнительных условий.

Пример. Попробуем найти энергию основного состояния атома водорода с гамильтонианом

  =   .

В основном состоянии l=0, а потому в сферических координатах волновая функция зависит только от r , но не от и :

  = (r).

Она должна очень быстро стремиться к нулю при r  0, а потому можно попытаться положить

  = Pn(r)e r,

где Pn(r) - некоторый полином, а - варьируемый параметр. Но в вариационном исчислении доказывается, что функция, доставляющая минимум функционалу, не может иметь нулей в конечной области (а функция, доставляющая (n+1)- й экстремум, имеет n нулей - это теорема об узлах). Поэтому для волновой функции основного состояния полином Pn  должен быть просто константой, и множество пробных функций есть

 (r) = Аe r,     >0.

Дальше будут полезны интегралы

 In() ,

которые получаются дифференцированием по основного интеграла

 I0() .

Находим константу А из условия нормировки:

1 =dV =r2drd(r) (r) = 4A2r2dre-2r = 4A2I2(2) =

= 4A2= ,

откуда

 А =   (r) = e r.

Вычисляем функционал J(). Учитывая, что

 2 (e r) =  e r + 2e r

получим (элементарные выкладки с использованием In опускаем)

J() =  e r()e r = .

Ищем минимум

 0 =,

где а-радиус Бора. Для приближенной волновой функции основного состояния получаем

 0(r) = .

Энергия основного состояния приближенно вычисляется как J(0):

 E0 = J(0) = ,

т.е.

 E0 = .

На самом деле результаты получились точными. Это потому, что слишком уж хорошую выбрали пробную функцию. Если бы взяли

 (r) = А e r,

то результаты получились бы значительно хуже.

В качестве полезного упражнения предлагается решить аналогичную задачу для одномерного гармонического осциллятора

  = ,

взяв как раз пробные функции вида

 (x) =А e x,    >0.

ОСНОВЫ КВАЗИРЕЛЯТИВИСТСКОЙ КВАНТОВОЙ ТЕОРИИ

Будем искать релятивистские поправки к нерелятивистской квантовой физике. В последовательной релятивистской квантовой теории возможны процессы рождения частиц, которые в рамках нашего курса не могут быть учтены, почему мы и говорим не о релятивистской квантовой теории, а о релятивистских поправках к нерелятивистской квантовой теории, или о квазирелятивистском приближении.

Дальше будет очень полезным следующий эвристический способ «вывода» уравнения Шредингера. Берем классический гамильтониан свободной частицы

 H =

заменяем в нем классические величины по правилу

,         p i

и действуем полученными операторами на волновую функцию:

 i.

Ясно, что это уравнение не обладает свойством релятивистской инвариантности. При переходе к другой системе отсчета энергия и квадрат импульса преобразуются по-разному. В уравнении Шредингера стоит первая производная по времени, но вторые производные по координатам, а время и пространственные координаты в теории относительности должны быть формально равноправны.

Напомним основные положения специальной теории относительности (СТО). Пространство Минковского состоит из 4-векторов

  = (x0,x1,x2,x3),

где

 x0 = ct,    а     x1,x2,x3 = x

есть обычный 3-вектор. Верхние индексы отвечают контравариантным компонентам векторов. Можно перейти к ковариантным векторам и наоборот по правилу

 x = gx ,     x = gx ,

где g - метрический тензор:

 g = g = .

Скалярное произведение в пространстве Минковского вводится как

 () = y0x = gyx = gyx = x0y0 (x,y),

и оно является 4-скаляром, или инвариантом преобразований Лоренца. В частности, скалярный квадрат самого 4-вектора   записывается как

 ()2 = (x0)2  x2.

Преобразования Лоренца есть как раз линейные преобразования, сохраняющие скалярные квадраты 4-векторов:

 x = x, (, ) = (,)

откуда нетрудно получить основное свойство матрицы Лоренца

 gT = g.

Преобразования Лоренца описывают переход от одной инерциальной системы отсчета к другой (вращения и движения, но не трансляции). В частности, если штрихованная система отсчета движется относительно исходной вдоль общей оси x1=x со скоростью V, то матрица Лоренца такова:

  = ,         .

В СТО энергия E и импульс p объединяются в 4-вектор

  = (p0,p1,p2,p3),

где

 p0 = ,     (p1,p2,p3) = p.

При преобразованиях Лоренца

 p p = p.

Квадрат 4-импульса есть инвариант:

 p p = ()2  p2 = 2c2 = inv,

где - масса частицы (в последовательной теории это есть ее определение!). Преобразование Лоренца сохраняет 4-скалярные произведения, в частности

 px = px.

Вернемся к квантовой теории. Начали с подстановок

 H   i,          p  i,

которые теперь можно объединить в ковариантную подстановку

 p  i,        .

В частности, если взять релятивистское выражение для энергии

 E =

и сделать в нем эти подстановки, получим нечто вроде релятивистского обобщения уравнения Шредингера

 i.

Но здесь непонятно, что такое корень из оператора. Правда, его можно попытаться разложить в ряд Тейлора, но тогда возникнут производные сколько угодно высокого порядка - тоже нехорошо. Связь  с (r) не будет локальной, и фактически выписанное уравнение, как можно показать, есть интегральное уравнение. От такого уравнения отказываемся, так как и соответствующая теория пока не построена (формально ее можно построить и некие ее результаты даже используются, но ничего хорошего на этом пути не получается).

Будем действовать по другому, исходя из выражения не для самой энергии, а для ее квадрата:

 E2 = p2c2 + 2c4.

file:///web/5fan/public_html/www/files/13/5fan_ru_67564_38cb56c06ec51b6c3368efd3395594b0.doc

- ? -


 

А также другие работы, которые могут Вас заинтересовать

37613. История государства и права зарубежных стран (ИГПЗС) 712 KB
  В силу конкретноисторического подхода к государственноправовым явлениям и процессам присущим тому или иному обществу на том или ином этапе его развития оперируя множеством фактов и событий политической жизни деятельности государств правительств классов и партий ИГПЗС ставит своей целью выявление исторических закономерностей развития государства и права. ИГПЗС тесно связана с другой юридической наукой и учебной дисциплиной – Теорией государства и права также изучающей закономерности развития государства и права. Теория...
37614. Основи теорії транспортних процесів і систем 4.22 MB
  У цьому розділі вивчаються питання стосовно експлуатаційних властивостей транспортних засобів що використовуються для організації процесу перевезення вантажів та пасажирів. В країнах Азії до цих пір переміщення вантажів та людей за допомогою коромисел є дуже розповсюдженим. В умовах первинно общинного ладу для транспортування людей та вантажів використовувались найпростіші засоби включаючи в'ючних тварин. На сьогодні транспорт це одна із найважливіших галузей матеріального виробництва що виконує перевезення людей та вантажів.
37615. Программирование на языке ассемблера для микропроцессоров фирмы Intel 411.5 KB
  Программист или любой другой пользователь может использовать любые высокоуровневые средства вплоть до программ построения виртуальных миров и возможно даже не подозревать что на самом деле компьютер выполняет не команды языка на котором написана его программа а их трансформированное представление в форме скучной и унылой последовательности команд совсем другого языка машинного. шесть регистров сегментов: cs ds ss es fs gs; регистры состояния и управления: регистр флагов eflags flags; регистр указателя команды eip ip. Его...
37616. Тезисы лекций по маркетингу 534.5 KB
  В этой ипостаси маркетинг существует несколько тысяч лет когда произошло отделение купца негоцианта от производителя товара – ремесленника. Производственная: Разработка ассортимента новых продуктов; Разработка требований к новым товарам Сбытовая: Выбор каналов сбыта. Сравнительный анализ сбытовой и современной концепций маркетинга Сбытовая Современный маркетинг Учет потребностей Предприятия Потребителей Производится то что Удается произвести Что будет куплено Ассортимент Узкий Широкий Горизонт планирования Краткосрочный Длительный...
37617. Бег с барьерами 15.99 KB
  Дисциплины: Зимний сезон : 50 метров 60 метров Летний сезон : 100 метров женщины 110 метров мужчины 400 метров История Первые упоминания об официальных стартах в барьерном беге относятся к соревнованиям в Англии в 1837 году в колледже Итон. Олимпийский дебют на дистанции 110 метров с барьерами состоялся в 1896 году.
37618. Горный бег 18.2 KB
  Классификация трасс по критерию набор высоты Категория А: набор высоты составляет как минимум 76 метров 250 футов на каждую милю 16 км дистанции; по шоссе проходит не более 20 от общей длины трассы; трасса должна быть длиной не менее одной мили 16 Категория В: набор высоты составляет как минимум 38 метров 125 футов на каждую милю 16 км дистанции; по шоссе проходит не более 30 от общей длины трассы; Категория С: набор высоты составляет как минимум 304 метра 100 футов на каждую милю 16 км дистанции; по шоссе проходит не...
37619. Михаил Сергеевич Горбачёв 42.26 KB
  Как обычные люди становятся историческими личностями, что выделяет их из общего ряда? То, что отличает от остальных, - исключительные способности, энергия, честолюбие, жажда власти, приверженность идеалу, или, напротив, безоглядный цинизм, беспринципность, или то, что с ними связывает
37620. Слагаемые профессионального имиджа педагога 135.5 KB
  Теоретические основы исследования проблемы имиджа педагога. Понятие и структура имиджа. Профессиональный имидж педагога. Создание имиджа учителя. Рекомендации и памятки для учителей...
37621. Определение итогов года по всем объектам учет прибыли и убытков компании 64.87 KB
  Дано: Ведомость расчета ущерба по объекту страхования Таблица выданных полюсов страхования Окончательный расчет рисков. начало Заполняем из таблицы Ведомость расчета ущерба по объекту страхования следующие поля: Номер договора Номер полиса Дата выдачи Колво страховых случаев соответствующие поля таблицы Учет фактических доходов компании Переносим из таблицы Окончательный расчет рисков страхования следующие поля: Ф.О Объект Адрес Вид страхования Срок страхования и заполняем в соответствующие поля...