67564

ВАРИАЦИОННЫЙ МЕТОД

Лекция

Физика

Ищем функции доставляющие функционалу экстремум при дополнительном условии нормировки. Таким образом вместо того чтобы решать уравнение Шредингера можно искать функции которые доставляют экстремум функционалу J. Возьмем собственные функции гамильтониана...

Русский

2014-09-12

239 KB

1 чел.

Л Е К Ц И Я 14

ВАРИАЦИОННЫЙ  МЕТОД

Еще один мощный метод нахождения низших энергетических уровней - вариационный метод. Рассмотрим функционал

 J(,) =  = (x) (x),

где x – весь набор переменных. Функции предполагаются нормированными:

  = (x) (x) = 1.

Решаем задачу на условный экстремум, т.е. ищем функции, доставляющие функционалу экстремум при дополнительном условии нормировки. Используем метод Лагранжа, т.е. требуем

 (x) (x)   (x) (x) = 0,

или

 (  ) + (  ) = 0.

Поскольку  и  считаются независимыми вариациями, то экстремумы достигаются на функциях , удовлетворяющих уравнениям

  = ,     = .

Видим, что условие экстремума есть стационарное уравнение Шредингера, если отождествить = E. Поскольку  - эрмитов оператор, то = , и уравнения для и эквивалентны - получаются друг из друга операцией комплексного сопряжения ( - вещественный оператор). Таким образом, вместо того, чтобы решать уравнение Шредингера, можно искать функции, которые доставляют экстремум функционалу J.

Покажем, что абсолютный минимум функционалу J дает волновая функция основного состояния. Возьмем собственные функции гамильтониана

 n = Enn,         nm = nm,

и разложим по ним произвольную функцию :

  = ann.

Из условия нормировки следует, что

 |an|2 = 1.

Подставляем разложение в функционал:

J =  =anamnm = anam Emnm  = En|an|2.

Пусть E0 - энергия основного состояния, тогда En   E0, и

 J = En|an|2  E0|an|2 = E0       JE0.

Но, если = 0, то

 J = E0.

Таким образом, функционал J имеет минимум, и он достигается именно на функции 0. Это его минимальное значение равно E0 , что и составляет основу вариационного метода при отыскании энергии основного состояния.

На вариационный метод позволяет найти и следующие энергетические уровни. Пусть нашли E0 как минимум функционала, достигаемого на функции =0. Будем искать энергию E1 и функцию 1 из условия минимума функционала при дополнительных ограничениях

  = 1,     0 = 0.

Доказательство почти такое же, как в предыдущем случае. Имеем

 J =  = En|an|2,

где по-прежнему

 |an|2 = 1,

но теперь из условия 0=0 следует a0=0, и потому

 J = En|an|2 E1|an|2 = E1.

Таким образом,

 J  E1,

причем минимум достигается на =1.

Высшие энергетические уровни находятся аналогично. Значение En находится как минимум функционала на функциях, подчиненных условиям

  = 1,   n = 1 = ... = n-1 = 0.

До сих пор рассмотрение было точным, но решение вариационной задачи обычно не проще, а сложнее непосредственного решения уравнения Шредингера. Но есть еще приближенный метод, и очень эффективный, - прямой вариационный метод, или метод Ритца. В этом методе экстремумы ищутся не на всем множестве квадратично интегрируемых функций, а только на пробных функциях, принадлежащих весьма узкому классу. А именно, выбирают функции какого-то заданного вида, но зависящие от некоторого числа параметров:

  = (x, , ...) .

Тогда и функционал

 J =  =(x, , ...) (x, , ...)dx = J(, , ...),

будет функцией этих параметров, и отыскание его экстремума сводится к отысканию экстремума функции нескольких переменных , , ..., а это весьма простая задача из области обычного математического анализа. Если пробные функции заранее нормированы (а это всегда делают), то минимум будет находиться из решения системы обычных уравнений

  = 0,      = 0,...,

откуда получаются значения 0, 0,..., для которых, как следует из строгого рассмотрения, всегда

 J(0,0,...)  E0.

Если класс пробных функций выбран удачно, то можно приближенно положить

 E0 = J(0,0,...),        0 = (x0,0,...).

Главное искусство, таким образом, выбор подходящего класса пробных функций. Здесь нужно использовать всю наличную информацию, дополняя ее интуицией. Следующие уровни находятся, как описано выше. Функция берется из того же класса, но не только нормированной, но и ортогональной к приближенной функции 0 основного состояния, уже найденной. Практически метод используют для нахождения нескольких нижних уровней, так как с ростом номера уровня резко возрастают вычислительные трудности из-за множества дополнительных условий.

Пример. Попробуем найти энергию основного состояния атома водорода с гамильтонианом

  =   .

В основном состоянии l=0, а потому в сферических координатах волновая функция зависит только от r , но не от и :

  = (r).

Она должна очень быстро стремиться к нулю при r  0, а потому можно попытаться положить

  = Pn(r)e r,

где Pn(r) - некоторый полином, а - варьируемый параметр. Но в вариационном исчислении доказывается, что функция, доставляющая минимум функционалу, не может иметь нулей в конечной области (а функция, доставляющая (n+1)- й экстремум, имеет n нулей - это теорема об узлах). Поэтому для волновой функции основного состояния полином Pn  должен быть просто константой, и множество пробных функций есть

 (r) = Аe r,     >0.

Дальше будут полезны интегралы

 In() ,

которые получаются дифференцированием по основного интеграла

 I0() .

Находим константу А из условия нормировки:

1 =dV =r2drd(r) (r) = 4A2r2dre-2r = 4A2I2(2) =

= 4A2= ,

откуда

 А =   (r) = e r.

Вычисляем функционал J(). Учитывая, что

 2 (e r) =  e r + 2e r

получим (элементарные выкладки с использованием In опускаем)

J() =  e r()e r = .

Ищем минимум

 0 =,

где а-радиус Бора. Для приближенной волновой функции основного состояния получаем

 0(r) = .

Энергия основного состояния приближенно вычисляется как J(0):

 E0 = J(0) = ,

т.е.

 E0 = .

На самом деле результаты получились точными. Это потому, что слишком уж хорошую выбрали пробную функцию. Если бы взяли

 (r) = А e r,

то результаты получились бы значительно хуже.

В качестве полезного упражнения предлагается решить аналогичную задачу для одномерного гармонического осциллятора

  = ,

взяв как раз пробные функции вида

 (x) =А e x,    >0.

ОСНОВЫ КВАЗИРЕЛЯТИВИСТСКОЙ КВАНТОВОЙ ТЕОРИИ

Будем искать релятивистские поправки к нерелятивистской квантовой физике. В последовательной релятивистской квантовой теории возможны процессы рождения частиц, которые в рамках нашего курса не могут быть учтены, почему мы и говорим не о релятивистской квантовой теории, а о релятивистских поправках к нерелятивистской квантовой теории, или о квазирелятивистском приближении.

Дальше будет очень полезным следующий эвристический способ «вывода» уравнения Шредингера. Берем классический гамильтониан свободной частицы

 H =

заменяем в нем классические величины по правилу

,         p i

и действуем полученными операторами на волновую функцию:

 i.

Ясно, что это уравнение не обладает свойством релятивистской инвариантности. При переходе к другой системе отсчета энергия и квадрат импульса преобразуются по-разному. В уравнении Шредингера стоит первая производная по времени, но вторые производные по координатам, а время и пространственные координаты в теории относительности должны быть формально равноправны.

Напомним основные положения специальной теории относительности (СТО). Пространство Минковского состоит из 4-векторов

  = (x0,x1,x2,x3),

где

 x0 = ct,    а     x1,x2,x3 = x

есть обычный 3-вектор. Верхние индексы отвечают контравариантным компонентам векторов. Можно перейти к ковариантным векторам и наоборот по правилу

 x = gx ,     x = gx ,

где g - метрический тензор:

 g = g = .

Скалярное произведение в пространстве Минковского вводится как

 () = y0x = gyx = gyx = x0y0 (x,y),

и оно является 4-скаляром, или инвариантом преобразований Лоренца. В частности, скалярный квадрат самого 4-вектора   записывается как

 ()2 = (x0)2  x2.

Преобразования Лоренца есть как раз линейные преобразования, сохраняющие скалярные квадраты 4-векторов:

 x = x, (, ) = (,)

откуда нетрудно получить основное свойство матрицы Лоренца

 gT = g.

Преобразования Лоренца описывают переход от одной инерциальной системы отсчета к другой (вращения и движения, но не трансляции). В частности, если штрихованная система отсчета движется относительно исходной вдоль общей оси x1=x со скоростью V, то матрица Лоренца такова:

  = ,         .

В СТО энергия E и импульс p объединяются в 4-вектор

  = (p0,p1,p2,p3),

где

 p0 = ,     (p1,p2,p3) = p.

При преобразованиях Лоренца

 p p = p.

Квадрат 4-импульса есть инвариант:

 p p = ()2  p2 = 2c2 = inv,

где - масса частицы (в последовательной теории это есть ее определение!). Преобразование Лоренца сохраняет 4-скалярные произведения, в частности

 px = px.

Вернемся к квантовой теории. Начали с подстановок

 H   i,          p  i,

которые теперь можно объединить в ковариантную подстановку

 p  i,        .

В частности, если взять релятивистское выражение для энергии

 E =

и сделать в нем эти подстановки, получим нечто вроде релятивистского обобщения уравнения Шредингера

 i.

Но здесь непонятно, что такое корень из оператора. Правда, его можно попытаться разложить в ряд Тейлора, но тогда возникнут производные сколько угодно высокого порядка - тоже нехорошо. Связь  с (r) не будет локальной, и фактически выписанное уравнение, как можно показать, есть интегральное уравнение. От такого уравнения отказываемся, так как и соответствующая теория пока не построена (формально ее можно построить и некие ее результаты даже используются, но ничего хорошего на этом пути не получается).

Будем действовать по другому, исходя из выражения не для самой энергии, а для ее квадрата:

 E2 = p2c2 + 2c4.

file:///web/5fan/public_html/www/files/13/5fan_ru_67564_38cb56c06ec51b6c3368efd3395594b0.doc

- ? -


 

А также другие работы, которые могут Вас заинтересовать

22121. Генетические основы эволюции 118.5 KB
  Комбинативная изменчивость – изменчивость в основе которой лежит образование комбинаций генов которых не было у родителей. Комбинативная изменчивость обуславливается следующими процессами: независимым расхождением гомологичных хромосом в мейозе; случайным сочетанием хромосом при оплодотворении; рекомбинацией генов в результате кроссинговера. Частота мутаций не одинакова для разных генов и для разных организмов. Поскольку генов в каждой гамете много например у человека в геноме содержится около 30 тысяч генов то в каждом поколении около...
22122. ЭЛЕМЕНТАРНЫЕ ФАКТОРЫ ЭВОЛЮЦИИ 88 KB
  Тогда частота аллеля b в популяции будет медленно но неуклонно возрастать в каждом поколении на одну десятитысячную если этому возрастанию не будут препятствовать или способствовать другие факторы эволюции. В принципе только благодаря мутационному процессу новый аллель может практически полностью вытеснить старый аллель из популяции. Однако в одной популяции растущей на вершине урансодержащих гор вблизи Большого Медвежьего озера Канада обнаружены многочисленные мутантные растения с бледнорозовыми цветками. Изоляция – это прекращение...
22123. ИСКУССТВЕННЫЙ ОТБОР 51.5 KB
  Количество часов: 2 ИСКУССТВЕННЫЙ ОТБОР Понятие об искусственном отборе Формы искусственного отбора Понятие об искусственном отборе Искусственный отбор – выбор человеком наиболее ценных в хозяйственном отношении особей животных и растений данного вида пород или сорта для получения от них потомства с желательными свойствами. Таблица Формы отбора Показатели Искусственный отбор Естественный отбор Исходный материал для отбора Индивидуальныепризнаки организма Индивидуальные признаки организма Отбирающийфактор Человек Условия среды живаяи...
22124. Биологический вид 95 KB
  Количество часов: 2 Биологический вид История развития концепции вида. Современные концепции вида Критерии вида Структура и общие признаки вида История развития концепции вида. Современные концепции вида Вид является одной из основных форм организации жизни на Земле и основной единицей классификации биологического разнообразия. Есть группы с огромным числом видов и группы – даже высокого таксономического ранга – представленные немногими видами в современной фауне и флоре.
22125. Видообразование. Понятие о видообразовании. Пути видообразования. Принцип основателя 105 KB
  Пути видообразования. Принцип основателя Теория аллопатрического видообразования Теория симпатрического видообразования Темпы видообразования Дополнительная литература: Понятие о видообразовании. Пути видообразования. Существуют три основных пути видообразования: филетическое гибридогенное и дивергентное.
22126. Соотношение онто- и филогенеза 99.5 KB
  Особенности и продолжительность онтогенеза в разных группах организмов Соотношение между онто и филогенезом Основные направления эволюции онтогенеза Общие представления о филогенезе и онтогенезе. Особенности и продолжительность онтогенеза в разных группах организмов Филогенез phyle – племя – это историческое развитие как отдельных видов и систематических групп организмов так и органического мира в целом. Преобразование одноклеточного зародыша в многоклеточный организм развитие этих составных частей функционирование рост...
22127. Эволюция органов и функций 82 KB
  Количество часов: 2 Эволюция органов и функций Принципы филогенетического преобразования органов и функций. Взаимосвязь морфофизиологических преобразований органов и систем в филогенезе. Принцип компенсации функций Принципы филогенетического преобразования органов и функций. Филогенетические изменения органов весьма разнообразны.
22128. Происхождение и развитие жизни на Земле 191 KB
  Количество часов: 6 Происхождение и развитие жизни на Земле Жизнь как особая форма движения материи. Гипотезы происхождения жизни Краткие сведения о геохронологии Возникновение жизни. Но не преувеличивают ли загадочности жизни. Второе – перенос жизни через мировые пространства довольно трудно допустить.
22129. ВВЕДЕНИЕ В ТЕОРИЮ ЭВОЛЮЦИИ 92 KB
  Количество часов: 2 В биологии все наполняется смыслом лишь тогда когда истолковывается с эволюционной точки зрения. Значение эволюционной теории Основные доказательства эволюции. Значение эволюционной теории Происхождение жизни на Земле – одна из центральных проблем современного естествознания и исходная точка любой религии. Целью эволюционной теории является выявление закономерностей развития органического мира объектом служат организмы в процессе их исторического развития к методам изучения относятся палеонтологический...