67565

ОСНОВЫ КВАЗИРЕЛЯТИВИСТСКОЙ КВАНТОВОЙ ТЕОРИИ. УРАВНЕНИЕ КЛЕЙНА-ГОРДОНА

Лекция

Физика

Видим, что трудность проистекает из-за того, что в уравнении - вторая производная по времени. Попытаемся получить релятивистское уравнение первого порядка по времени. Но в СТО время и координаты равноправны, поэтому уравнение должно быть первого порядка и по координатам. Общий вид такого уравнения...

Русский

2014-09-12

192 KB

0 чел.

Л Е К Ц И Я  15

ОСНОВЫ КВАЗИРЕЛЯТИВИСТСКОЙ КВАНТОВОЙ ТЕОРИИ

Продолжение

УРАВНЕНИЕ КЛЕЙНА-ГОРДОНА

Делая в этом выражении подстановки

 E  i,      p -i,

получим

- = (-c222 + 2c4) = 0

или

 2 - = 0.

Вводя инвариантный оператор Даламбера

  = ,      

запишем уравнение в явно ковариантной форме

  + ()2 = 0   

К нему можно прийти и из ковариантного соотношения

 p2 = pp = 2c2,

делая в нем подстановки

 p  -i  -i.

Так или иначе, имеем релятивистский аналог уравнения Шредингера, которое называется уравнение Клейна-Гордона.

Умножая  слева на , а сопряженное уравнение слева на и производя вычитание, после элементарных выкладок получим уравнение непрерывности

  + divj = 0,

выражающее некий закон сохранения, в котором

 

и

 .

Можно поступить иначе: умножить  на , а сопряженное уравнение на и вычесть. Тогда получим уравнение непрерывности в ковариантной форме

 j = 0,

где

 j = - .

Расписывая по компонентам, получим те же результаты.

Вектор j получился абсолютно таким же, как в нерелятивистской квантовой механике, а там мы его отождествили с вектором плотности потока вероятности. Но там плотность вероятности была

  = ||2  ,

а здесь для нее получилось другое выражение. Казалось бы, и здесь новое можно интерпретировать как плотность вероятности. Но такая интерпретация не проходит. Уравнение Клейна-Гордона - второго порядка по времени, а потому для него необходимо задать 2 начальных условия - для и . И их всегда можно подобрать так, что будет <0. Мало того, если при t=0 >0, то по истечении времени может быть как >0, так и <0, т.е. плотность вероятности будет индефинитной, тогда как она должна быть всегда по самому смыслу быть положительно определенной.

Видим, что трудность проистекает из-за того, что в уравнении - вторая производная по времени. Попытаемся получить релятивистское уравнение первого порядка по времени. Но в СТО время и координаты равноправны, поэтому уравнение должно быть первого порядка и по координатам. Общий вид такого уравнения

 ,

где  в самом начале поставлено просто для удобства, для сравнения с обычным уравнением. Здесь 1, 2, 3 и - некоторые неизвестные коэффициенты. Ясно, что  не может быть обычной скалярной функцией, ибо при обычном трехмерном вращении левая часть не изменится, а правая преобразуется как вектор. Поэтому считаем многокомпонентной (с дополнительными внутренними степенями свободы):

  = .

Поэтому на самом деле нужно писать не , а (r,t), и отсюда уже почти ясно, что j и должны быть не обычными числами, а матрицами.

Каждый компонент должен подчиняться уравнению Клейна-Гордона

  ,

так как оно выражает лишь релятивистское соотношение между p и Е. Это сейчас позволит нам найти коэффициенты j, . Для этого берем уравнение

 

и действуем на обе его части оператором =:

 ( = ().

Подставляя явное выражение  и производя аккуратно (с учетом возможной некоммутативности j и ) перемножение, получим

 

(по двойным индексам - суммирование от 1 до 3). Чтобы это уравнение совпало с УКГ, необходимо потребовать

 ij + jI = 2ij,    i + I = 0,    2 =1.        ()

Отсюда уже абсолютно ясно, что j, - матрицы, а потому  - матричный (и дифференциальный) оператор. Поскольку  должен быть эрмитовым оператором, то j, -квадратные матрицы, причем порядка NN, где N - число компонентов у . Система уравнений () неразрешима при слишком малых N(=1,2,3). Минимальное N, при котором система перестает быть переопределенной, есть N=4 (вообще можно доказать, что N должно быть четным, мало того, оно должно быть квадратом, так что следующее N есть N=16). Одно из возможных решений таково:

 i  = ,        = ,

где i - матрицы Паули:

 1=,    2=,    3=;    I=.

Существуют и другие решения, но они не дают новой физики, ибо связаны с предыдущим преобразованием унитарной эквивалентности.

Итак, получаем уравнение Дирака

+c2,

где матрицы Дирака подчиняются соотношениям (), и один из наборов выписан явно выше. Функция на самом деле есть 4-компонентный столбец

 (r,t) = ,

и в более подробной форме записи уравнение Дирака выглядит так:

+c2

На самом деле это система четырех уравнений для четырех функций .

Уравнение Дирака можно записать гораздо более симметрично, если умножить обе его части слева на и ввести новые матрицы 44

 0 = ,    j = j = 0j,

удовлетворяющие антикоммутационным соотношениям

   +  = 2g.

Тогда получим

 i = 0.

Именно в этой форме записи удобнее всего исследовать свойство релятивистской инвариантности.

Введем сопряженную функцию

 + = (1,2,3,4),

которая подчиняется уравнению, сопряженному дираковскому:

 j + c2+.

Умножая уравнение Дирака слева на  +, а сопряженное справа на , найдем

 i+ j + + c2+.

и

  ij  + c2+

Производим вычитание

(+j ).

В итоге получаем уравнение непрерывности

 + divj = 0,

где

  = +,    j = c+    (1, 2, 3).

Величина положительно определена:

  = 12 + 22 + 32 + 42

и может быть интерпретирована как плотность вероятности, чего нельзя было сделать в случае уравнения Клейна-Гордона. Она очень похожа на обычную плотность вероятности, только содержит 4 слагаемых. Но вектор j, интерпретируемый как плотность потока вероятности, теперь существенно изменился; в частности, он не содержит пространственных координат.

Будем искать решение уравнения Дирака в виде

Ep(r,t) = w(E,p); w  .

Подставляя все это в уравнение Дирака и учитывая явный вид матриц j и , получим алгебраическую систему формально двух, на самом деле четырех уравнений

 Eu = c(p)v + c2u

 Ev = c(p)u  c2v ,

где

  = 1, 2, 3,   p = 1p1 + 2p2 + 3p3 = jpj.

Условие нетривиальной разрешимости дает

 = 0

откуда

 Е2  2c4  c2(p)2 = 0.

Раскрываем

(p)2 = (p)( p) = jpj kpk = (jk)(pjpk).

Учитывая, что

 jk = 0 (j k), (j)2 = I,

получим

(p)2 = p2,

и условие разрешимости запишется как

 Е2  2c4  c2p2 = 0.

Таким образом, нетривиальные решения существуют лишь при

 Е =    p,

а это есть релятивистское соотношение между энергией и импульсом (но появились оба знака!).

Так как det=0, то второе уравнение будет следствием первого, и его можно не рассматривать, но лучше бывает оставить второе, а выкинуть первое. При Е=p задает u произвольно, тогда из второго

 v = u.

Но само u содержит две линейно независимые функции:

 u(p) = u01(p) +u02(p) =  .

Поэтому находим при Е=p>0:

 w+ = ,    ( = 1,2).

Вторую пару решений получим при Е = p < 0. Теперь будем считать заданным

 v(p) = v01(p) = v02(p) =

и из первого уравнения системы получим

 u = -v.

Поэтому находим при Е = p < 0:

 w-(p) = .

Таким образом, внутренними переменными, значения которых характеризуют разные решения, являются знак энергии (+ и ), а также величина . Ее значения =1, 2 нумеруют решения внутри верхней пары u и нижней пары v компонентов полной волновой функции.

file:///web/5fan/public_html/www/files/13/5fan_ru_67565_47227ff53b7749144de8811e308cb710.doc

- 141 -


 

А также другие работы, которые могут Вас заинтересовать

85674. Разработка способов восстановления, технологического оборудования на основе широкого использования достижений науки и техники 283 KB
  Создание парка грузовых автомобилей в нашей стране потребовало организовать их ремонт для поддержания работоспособного состояния. До конца 70-х годов преобладало направление – выполнение КР полнокомплектных автомобилей. Однако это шло в ущерб экономики, увеличились простои автомобилей в ремонт
85675. Организация ремонта и расчет себестоимости ремонта буферных комплектов переходных площадок пассажирских вагонов 263 KB
  Краткая характеристика буферных комплектов переходных площадок пассажирских вагонов. Подбор оборудования и запасных частей для ремонта буферных комплектов переходных площадок пассажирских вагонов. Расчет себестоимости ремонта буферных комплектов переходных площадок пассажирских вагонов18 7.31 Введение Основной задачей курсового проекта Организация ремонта и расчет себестоимости ремонта буферных комплектов переходных площадок пассажирских вагонов является определение себестоимости ремонта буферных комплектов...
85676. Определение рыночной стоимости открытого акционерного общества «Пермский завод силикатных панелей» 1.14 MB
  Возможность продажи акций на фондовой бирже служит и средством сохранения денег и стимулом для преобразования деятельности предприятия. Для достижения цели работы необходимо решить следующие задачи: определить основные понятия и цели оценки стоимости предприятия; рассмотреть основные подходы...
85677. Совершенствование логистической деятельности промышленного предприятия на примере ОАО «Керимин» 405.72 KB
  ОАО Керамин это стабильное крупное динамично развивающееся предприятие по производству высококачественных строительных материалов: керамической плитки керамического гранита изделий санитарной керамики керамических камней и кирпича.
85678. Стальной каркас промышленного здания 125.78 KB
  Расчёт балки настила. Расчёт главной балки. Суммарная нагрузка Расчёт балки настила. В данном случае рабочая площадка устойчивость обеспечивает поскольку стальные листы настила непосредственно крепятся к верхнему поясу балок и таким образом исключает возможность выхода балки из плоскости изгиба.
85679. Многомерная и дифференциальная геометрии в задачах 4.44 MB
  Основные определения теоремы и формулы Непустое множество называется мерным аффинным точечным пространством над векторным пространством если выполнены следующие аксиомы: 1 каждой упорядоченной паре точек поставлен в соответствие определенный вектор из который обозначается ; 2 для каждой точки и вектора существует одна и только одна точка такая что ; 3 для любых точек и выполняется равенство . Тогда координаты произвольной точки в старой системе координаты выражаются через ее координаты в новой системе координат по формулам: ...
85682. Концепція управління за цілями як засіб підвищення ефективності підприємства 1.8 MB
  Метою курсової роботи є дослідження теоретично-методологічних засад підвищення впливу лідерства на ефективність функціонування підприємства; вивчення теоретичних та методологічних основ управління ефективністю діяльності підприємства.