67565

ОСНОВЫ КВАЗИРЕЛЯТИВИСТСКОЙ КВАНТОВОЙ ТЕОРИИ. УРАВНЕНИЕ КЛЕЙНА-ГОРДОНА

Лекция

Физика

Видим, что трудность проистекает из-за того, что в уравнении - вторая производная по времени. Попытаемся получить релятивистское уравнение первого порядка по времени. Но в СТО время и координаты равноправны, поэтому уравнение должно быть первого порядка и по координатам. Общий вид такого уравнения...

Русский

2014-09-12

192 KB

0 чел.

Л Е К Ц И Я  15

ОСНОВЫ КВАЗИРЕЛЯТИВИСТСКОЙ КВАНТОВОЙ ТЕОРИИ

Продолжение

УРАВНЕНИЕ КЛЕЙНА-ГОРДОНА

Делая в этом выражении подстановки

 E  i,      p -i,

получим

- = (-c222 + 2c4) = 0

или

 2 - = 0.

Вводя инвариантный оператор Даламбера

  = ,      

запишем уравнение в явно ковариантной форме

  + ()2 = 0   

К нему можно прийти и из ковариантного соотношения

 p2 = pp = 2c2,

делая в нем подстановки

 p  -i  -i.

Так или иначе, имеем релятивистский аналог уравнения Шредингера, которое называется уравнение Клейна-Гордона.

Умножая  слева на , а сопряженное уравнение слева на и производя вычитание, после элементарных выкладок получим уравнение непрерывности

  + divj = 0,

выражающее некий закон сохранения, в котором

 

и

 .

Можно поступить иначе: умножить  на , а сопряженное уравнение на и вычесть. Тогда получим уравнение непрерывности в ковариантной форме

 j = 0,

где

 j = - .

Расписывая по компонентам, получим те же результаты.

Вектор j получился абсолютно таким же, как в нерелятивистской квантовой механике, а там мы его отождествили с вектором плотности потока вероятности. Но там плотность вероятности была

  = ||2  ,

а здесь для нее получилось другое выражение. Казалось бы, и здесь новое можно интерпретировать как плотность вероятности. Но такая интерпретация не проходит. Уравнение Клейна-Гордона - второго порядка по времени, а потому для него необходимо задать 2 начальных условия - для и . И их всегда можно подобрать так, что будет <0. Мало того, если при t=0 >0, то по истечении времени может быть как >0, так и <0, т.е. плотность вероятности будет индефинитной, тогда как она должна быть всегда по самому смыслу быть положительно определенной.

Видим, что трудность проистекает из-за того, что в уравнении - вторая производная по времени. Попытаемся получить релятивистское уравнение первого порядка по времени. Но в СТО время и координаты равноправны, поэтому уравнение должно быть первого порядка и по координатам. Общий вид такого уравнения

 ,

где  в самом начале поставлено просто для удобства, для сравнения с обычным уравнением. Здесь 1, 2, 3 и - некоторые неизвестные коэффициенты. Ясно, что  не может быть обычной скалярной функцией, ибо при обычном трехмерном вращении левая часть не изменится, а правая преобразуется как вектор. Поэтому считаем многокомпонентной (с дополнительными внутренними степенями свободы):

  = .

Поэтому на самом деле нужно писать не , а (r,t), и отсюда уже почти ясно, что j и должны быть не обычными числами, а матрицами.

Каждый компонент должен подчиняться уравнению Клейна-Гордона

  ,

так как оно выражает лишь релятивистское соотношение между p и Е. Это сейчас позволит нам найти коэффициенты j, . Для этого берем уравнение

 

и действуем на обе его части оператором =:

 ( = ().

Подставляя явное выражение  и производя аккуратно (с учетом возможной некоммутативности j и ) перемножение, получим

 

(по двойным индексам - суммирование от 1 до 3). Чтобы это уравнение совпало с УКГ, необходимо потребовать

 ij + jI = 2ij,    i + I = 0,    2 =1.        ()

Отсюда уже абсолютно ясно, что j, - матрицы, а потому  - матричный (и дифференциальный) оператор. Поскольку  должен быть эрмитовым оператором, то j, -квадратные матрицы, причем порядка NN, где N - число компонентов у . Система уравнений () неразрешима при слишком малых N(=1,2,3). Минимальное N, при котором система перестает быть переопределенной, есть N=4 (вообще можно доказать, что N должно быть четным, мало того, оно должно быть квадратом, так что следующее N есть N=16). Одно из возможных решений таково:

 i  = ,        = ,

где i - матрицы Паули:

 1=,    2=,    3=;    I=.

Существуют и другие решения, но они не дают новой физики, ибо связаны с предыдущим преобразованием унитарной эквивалентности.

Итак, получаем уравнение Дирака

+c2,

где матрицы Дирака подчиняются соотношениям (), и один из наборов выписан явно выше. Функция на самом деле есть 4-компонентный столбец

 (r,t) = ,

и в более подробной форме записи уравнение Дирака выглядит так:

+c2

На самом деле это система четырех уравнений для четырех функций .

Уравнение Дирака можно записать гораздо более симметрично, если умножить обе его части слева на и ввести новые матрицы 44

 0 = ,    j = j = 0j,

удовлетворяющие антикоммутационным соотношениям

   +  = 2g.

Тогда получим

 i = 0.

Именно в этой форме записи удобнее всего исследовать свойство релятивистской инвариантности.

Введем сопряженную функцию

 + = (1,2,3,4),

которая подчиняется уравнению, сопряженному дираковскому:

 j + c2+.

Умножая уравнение Дирака слева на  +, а сопряженное справа на , найдем

 i+ j + + c2+.

и

  ij  + c2+

Производим вычитание

(+j ).

В итоге получаем уравнение непрерывности

 + divj = 0,

где

  = +,    j = c+    (1, 2, 3).

Величина положительно определена:

  = 12 + 22 + 32 + 42

и может быть интерпретирована как плотность вероятности, чего нельзя было сделать в случае уравнения Клейна-Гордона. Она очень похожа на обычную плотность вероятности, только содержит 4 слагаемых. Но вектор j, интерпретируемый как плотность потока вероятности, теперь существенно изменился; в частности, он не содержит пространственных координат.

Будем искать решение уравнения Дирака в виде

Ep(r,t) = w(E,p); w  .

Подставляя все это в уравнение Дирака и учитывая явный вид матриц j и , получим алгебраическую систему формально двух, на самом деле четырех уравнений

 Eu = c(p)v + c2u

 Ev = c(p)u  c2v ,

где

  = 1, 2, 3,   p = 1p1 + 2p2 + 3p3 = jpj.

Условие нетривиальной разрешимости дает

 = 0

откуда

 Е2  2c4  c2(p)2 = 0.

Раскрываем

(p)2 = (p)( p) = jpj kpk = (jk)(pjpk).

Учитывая, что

 jk = 0 (j k), (j)2 = I,

получим

(p)2 = p2,

и условие разрешимости запишется как

 Е2  2c4  c2p2 = 0.

Таким образом, нетривиальные решения существуют лишь при

 Е =    p,

а это есть релятивистское соотношение между энергией и импульсом (но появились оба знака!).

Так как det=0, то второе уравнение будет следствием первого, и его можно не рассматривать, но лучше бывает оставить второе, а выкинуть первое. При Е=p задает u произвольно, тогда из второго

 v = u.

Но само u содержит две линейно независимые функции:

 u(p) = u01(p) +u02(p) =  .

Поэтому находим при Е=p>0:

 w+ = ,    ( = 1,2).

Вторую пару решений получим при Е = p < 0. Теперь будем считать заданным

 v(p) = v01(p) = v02(p) =

и из первого уравнения системы получим

 u = -v.

Поэтому находим при Е = p < 0:

 w-(p) = .

Таким образом, внутренними переменными, значения которых характеризуют разные решения, являются знак энергии (+ и ), а также величина . Ее значения =1, 2 нумеруют решения внутри верхней пары u и нижней пары v компонентов полной волновой функции.

file:///web/5fan/public_html/www/files/13/5fan_ru_67565_47227ff53b7749144de8811e308cb710.doc

- 141 -


 

А также другие работы, которые могут Вас заинтересовать

52892. Eating habits. Good health is above wealth 52.5 KB
  At the lesson we are going to revise the words learned at the previous lessons ; improve reading ,listening and speaking skills; We are going to practice in grammar. We’ll give advice what food should we eat to be healthy.
52893. Охорона навколишнього середовища 102.5 KB
  This footage includes Masai in their own village. No animals were harmed in any way during the making of this music video. Shock footage of the actual inhumane treatment of animals was acquired from documents archives. It should be noted that while filming was in progress an Africa elephant (not pictured in the video) was killed by poachers within miles of the shoot.
52894. Entertainment. Things to do 323 KB
  Materials: Blackboard, textbook, worksheet, 2 computers, projector, powerpoint presentation, computer speakers, students’ projects, powerpoint template for student’s advertisements, ball
52895. Environmental protection 42.5 KB
  Green Peace is an international organization the main purpose of which is the protection of the environment. It provides active actions for nuclear – free future against the pollution of the biosphere and protection of nature. Green Peace was established by a group of North – American activists in 1971. The organization is worried about the disappearance of many species of animals and plants emission of radioactive and other harmful substances into the atmosphere, seas and oceans.
52897. GLOBAL COLLABORATIVE WORK WITH EPALS 79 KB
  An outstanding American philosopher, psychologist and educational reformer John Dewey perfectly said, "Education is not a preparation for life; education is life itself." We are in an era in which teachers and books are not the only sources of information and lectures are not the only method for delivering and acquiring knowledge. Learning in the 21st century requires critical thinking, adept use of technology...
52898. ЕПОХА ГЕНІЇВ І ТИТАНІВ 231 KB
  Група ІІ Географи та винахідники Великі географічні відкриття та наукові винаходи епохи Ренесансу Група ІІІ Філософи Світоглядні засади гуманізму та його втілення митцями доби Відродження Група ІV Мистецтвознавці Основні тенденції розвитку мистецтва Ренесансу Група V Педагоги гуманісти Гуманістичні теорії навчання та втілення мрії про щасливе майбутнє у творах представників епохи Група VІ Літературознавці та декламатори Людські почуття та пристрасті у творах найвидатніших представників епохи...
52899. Еритроцити. Переливання крові 153 KB
  Мета уроку 1. Навчальна: Формування поняття про еритроцити як формені елементи крові; формування поняття про групи крові; формування поняття про взаємозвязок біологічних явищ з математичними діями. Тип уроку: урок засвоєння нових знань Форма уроку: уроклабораторія Обладнання: мікрокопи постійні мікропрепарати крові людини та жаби таблиця Групи крові Міжпредметний звязок: біологія тварин історія математика статистика географія фізика Технологічна карта уроку № Етап урока Форма реалізації Кінцевий...
52900. Урок – конкурс з трудового навчання «Технічні ерудити» 34 KB
  Для цього весь навчальний рік розподіляють між навчальними предметами для проведення тижнів фізики хімії літератури трудового навчання тощо. Оскільки в конкурсі передбачено тури в яких виконуються трудові операції треба провести інструктаж з правил безпечної роботи. Після кожного туру конкурсу журі оголошує результати в балах. Програма проведення конкурсу 1й тур Кожний учасник змагання отримує завдання виконати на дошці ескіз деталі та проставити розміри на око.