67573

Смежные классы; разложение группы по подгруппе

Лекция

Математика и математический анализ

Множество xH называется левым а Hx правым смежным классом группы по подгруппе. Например очевидно что H=H=H так что подгруппа Н сама является одним из смежных классов. Свойства смежных классов Отображение определенное формулой является взаимно однозначным для всякого.

Русский

2014-09-12

179.5 KB

19 чел.

Лекция 2

Смежные классы;  разложение группы по подгруппе.

Условимся о следующих обозначениях. Если A и B два подмножества группы G, то A*B обозначает множество всевозможных произведений элементов первого из них на элементы второго, а  - множество всех обратных элементов из A. В этих обозначениях, например, условие, при котором A является подгруппой G можно записать в виде:

Определение

Пусть x некоторый фиксированный элемент  группы G, а H - любая ее подгруппа. Множество  x*H называется левым, а H*x - правым смежным классом группы по подгруппе.

Например, очевидно, что *H=H*=H, так что подгруппа Н сама является одним из смежных классов.

Свойства смежных классов

Отображение, определенное формулой  является взаимно однозначным для всякого .

Каждый элемент x входит в смежный класс x*H.

Если y входит в смежный класс x*H , то y*H=x*H

Если y не входит в смежный класс x*H, то

(Свойства 1- 4 сформулированы для левых смежных классов, но аналогичными свойствами обладают и правые).

Доказательство. 

  сюръективно по определению смежного класса. Если,  то есть , то по закону сокращения, то есть  инъективно.

Поскольку   входит в подгруппу H, x=x*   входит в смежный класс x*H.

Пусть y=x*h и , то есть z=  Тогда z=(x*h)*  = x*(h*) и значит входит в класс x*H. Таким образом, . Обратное включение вытекает из того, что  и значит входит в y*H.

Докажем от противного. Пусть классы x*H и y*H пересекаются и элемент z входит в каждый из них,  так что . Тогда  что противоречит нашему предположению.

Следствие

Если подгруппа H конечна, то все левые смежные классы содержат одинаковое число элементов, равное порядку этой подгруппы. (Следует из свойства 1.)

В качестве примера рассмотрим группу перестановок из 3 элементов. Составим для нее таблицу умножения. Эта группа состоит из 6 элементов .

Клетка таблицы, стоящая в i-ой строке и в j- ом столбце содержит номер элемента, равного . Она имеет следующий вид:

Рассмотрим подмножество H в состоящее из элементов  и . (Будем писать: H={1,2}). Легко видеть, что H - подгруппа. (Заметим, что ). Пользуясь таблицей умножения находим левые смежные классы:

 ,,. Таким образом, имеем 3 различных левых смежных класса {1,2}, {3,4}, {5,6}. Аналогично строятся правые смежные классы: {1,2}, {3,5}, {4,6}.

Возьмем теперь  {1,4,5}. - подгруппа четных перестановок .  Для нее левые и правые смежные классы совпадают и состоят из элементов {1,4,5} и {2,3,6}.

Определение

Индексом [G:H] подгруппы H в группе G называется количество различных левых смежных классов G по H (если оно конечно).

Теорема Лагранжа

Если G конечная группа и H ее подгруппа, то

ord(G)={G:H]*ord(H)

(Здесь ord( ) обозначает порядок группы).

Доказательство

Пусть  - полный перечень левых смежных классов G по H и класс  содержит элементы . Тогда m - индекс [G:H] , а n - порядок H (по следствию из предыдущей теоремы). По свойству 3. все элементы  попарно различны и по свойству 2. исчерпывают список  элементов группы G. Значит, m*n=ord(G), что и требовалось.

Следствие

Порядок подгруппы делит порядок конечной группы.

В самом деле, число ord(G)/ord(H)=[G:H] является целым.

Замечания о таблицах умножения

Мы уже видели, что работая с конкретной конечной группой G, удобно иметь перед глазами ее таблицу умножения. Эта таблица называется таблицей Кэли. Ее можно построить для всякой АО на конечном множестве.  Для этого элементы множества надо занумеровать: . В  i- ой  строке  таблицы записываются элементы: .  Заметим, что  в случае, если АО превращает множество в группу G, все эти элементы попарно различны, как это вытекает из закона сокращения. Поскольку их число равно порядку G, каждая строка таблицы Кэли является некоторой перестановкой элементов группы . Например, если для группы условиться, что , первая строка будет  тождественной перестановкой. Аналогично, перестановкой элементов группы будет и каждый столбец. В частности, таблица не имеет одинаковых строк или столбцов. Оказывается, что если элементу  множества сопоставить i - ую строку таблицы Кэли, то произведению  (произведение относительно АО !) , будет в случае, если АО ассоциативна,  отвечать перестановка, равная произведению соответствующих перестановок. В самом деле, по правилу перемножения перестановок имеем: 

 

Некоторые свойства АО наглядно проявляются в устройстве ее таблицы Кэли. Например, коммутативность умножения проявляется в симметричности таблицы относительно главной диагонали. Напротив, свойство ассоциативности не имеет столь наглядной интерпретации в устройстве ее таблицы умножения.

Нормальные подгруппы

Пусть G - произвольная группа и H - ее подгруппа. Рассмотрим множество{ } всех попарно различных левых смежных классов G по H.

Определение

Подгруппа H называется нормальной в G (обозначение: ), если произведение любых двух левых смежных классов также представляет собой левый смежный класс.

Итак, нормальность подгруппы H означает, что

Произведение (x*H)*(y*H) содержит, в частности, элемент (x*e)*(y*e)=x*y  и значит, если это произведение является смежным классом, это может быть только класс (x*y)*H. Поэтому определение нормальной подгруппы принимает следующий вид: H нормальна в G, если для любых x и y

(x*H)*(y*H)=(x*y)*H.                                                                              (1)

Теорема (признак нормальной подгруппы)

H нормальна в G тогда и только тогда, когда  выполнено следующее условие: каждый правый смежный класс H*x совпадает с левым смежным классом x*H.

Доказательство

Пусть H нормальна в G то есть выполнено (1). Возьмем  в этом равенстве x=e, тогда получаем, что H*y*H=y*H, откуда следует, что.Запишем это равенство для элемента : . Умножая это включение слева и справа на y получим : , то есть .  Таким образом, классы H*y  и  y*H  совпадают. Обратно, если H*y=y*H, то (x*H)*(y*H)=x*(H*y)*H=x*(y*H)*H= (x*y)*H*H = (x*y)*H, то есть (1) выполнено.

Замечание 1.

Равенство H*x=x*H можно записать в равносильной форме:  . Проверим, что множество , стоящее в левой части этого равенства  является подгруппой в G для всякого . Используем признак подгруппы :   так как H является подгруппой и потому .

Каждая из подгрупп  называется подгруппой сопряженной с H. Условие нормальности поэтому можно еще сформулировать так.  Подгруппа H группы G нормальна, если

Замечание 2.

В коммутативной группе левые и правые смежные классы очевидно совпадают и потому в этом случае любая подгруппа будет нормальной. В некоммутативном случае могут встречаться и подгруппы, не являющиеся нормальными. Например, вернемся к группе  и ее подгруппе H. Как мы видели выше, левые {1,2}; {3,4); {5,6} и правые

{1,2}; {3,5}; {4,6} классы по этой подгруппе не совпадают и значит H нормальной не является. Легко посчитать, что, например, {3,4}*{5,6}={1,2,5,6} так что это множество смежным классом не является. Напротив,  - нормальная подгруппа в   и ее классы

={1,4,5} и ={2,3,6) перемножаются по правилу.

Факторгруппа

Пусть H - нормальная подгруппа группы G. Обозначим через G/H множество всех попарно различных смежных классов (безразлично,  левых или правых). Как нам известно, (x*H)*(y*H)=(x*y)*H, так что на множестве G/H определена АО. Эта операция, очевидно, ассоциативна. Поскольку H=, H*(x*H)=(x*H)*H=x*H и значит смежный класс H является нейтральным элементом для этой АО. Наконец,

так что каждый смежный класс обратим. Поэтому G/H оказывается группой, называемой факторгруппой группы G по нормальной подгруппе H.

Примеры

Мы уже построили выше факторгруппу S(3)/A(3). Имеется 2 смежных класса  и  с таблицей умножения: 

2.  Каждый левый смежный класс A*SL(n,R) в группе GL(n,R) состоит из всех матриц, определитель которых равен d=det(A). Аналогичное описание верно и для правого класса SL(n,R)*A, который, таким образом, совпадает с левым и SL(n,R) GL(n,R). Обозначим этот смежный класс символом C(d). Здесь d - любое ненулевое вещественное число. Поскольку при перемножении матриц их определители также перемножаются, C(d)*C(b)=C(db). Этим полностью описана факторгруппа GL(n,R)/SL(n,R).

3.  Пусть n=1, 2, ... , Целые числа кратные n образуют подгруппу nZ группы Z. Так как группа Z коммутативна, эта подгруппа нормальна. Каждый смежный класс p+nZ состоит из всех целых чисел, дающих при делении на n такой же остаток r что и число p. Обозначим этот смежный класс символом C(r) Поскольку  r=0, 1, ... (n-1), факторгруппа имеет порядок n. При этом C(r)+C(s)=C(r+s), причем имеется в виду, что если r+s>n-1, необходимо заменить r+s  на r+s-n (сложение по модулю n).    


 

А также другие работы, которые могут Вас заинтересовать

78133. Адекватность инноваций 44.5 KB
  Адекватность доказывают методом тождественности эквиваленту исследуемой модели итерационным анализом или оптимизации. Метод тождественности математических моделей доказывает адекватность математической модели физике явления и процессам преобразования физической модели...
78134. Оценка поврежденности адгезионного контакта упругих тел 136 KB
  В основу рассуждений кладутся энергетические представления – величина площади контакта соответствует минимуму потенциальной энергии системы контактирующих тел. Причинами являются загрязнение поверхности контакта и неполнота контакта слоев и связанные с физической природой...
78135. СНИЖЕНИЕ ПОТЕРЬ ЭНЕРГИИ ПУТЕМ ОПТИМИЗАЦИИ ПРОТИВОБОКСОВОЧНЫХ УСТРОЙСТВ В СИСТЕМЕ «КОЛЕСО-РЕЛЬС» 152 KB
  Рассмотрена задача снижения потерь энергии вследствие скольжения колеса по рельсу. Появилась новая проблема: фрикционные автоколебания возникающие при боксовании могут вызывать повреждения механизмов передачи тяги от ТЭД к колесам.
78136. Перекрытия. Требования, предъявляемые к перекрытиям 1.3 MB
  Требования предъявляемые к перекрытиям. Перекрытия являются одновременно несущими и ограждающими элементами зданий. Перекрытия вместе тем являются горизонтальными диафрагмами связывающими между собой вертикальные несущие конструкции и обеспечивающие устойчивость здания в целом. Кроме того перекрытия подвергаются также воздействиям связанным с эксплуатацией здания эксплутационная влага ударный и воздушный звук и т.
78137. Полы. Требования предъявляемые к полам 456.5 KB
  Полы устраиваются на грунте или по междуэтажным перекрытиям. Покрытия полов разделяют по способу устройства на полы из листовых материалов штучные и сплошные. Полы из листовых материалов К ним относятся полы из тапифлекса линолеля релина полихлоридных плиток древесностружечных и древесноволокнистых плит. Полы упруги эластичны водостойки и гигиеничны.
78138. Крыши. Требования, предъявляемые к крышам 1.29 MB
  В зависимости от величины уклона крыши подразделяются на: Скатные с уклоном более 10; Пологоскатные 410; Плоские 04. Крыши могут быть односкатными двухскатными четырехскатными вальмовыми полувальмовыми и многоскатными а также пирамидальными коническими купольными и сводчатыми рис. Скаты наклонные плоскости крыши.
78139. Кровли. Кровли из волнистых асбестоцементных листов 2.3 MB
  Недостатки: большой собственный вес и необходимость устройства крупного уклона в результате чего увеличивается площадь крыши и следовательно стоимость. Совмещенные крыши устраиваются вентилируемые и невентилируемые. Совмещенные невентилируемые крыши возводятся только в летнее время в районах с сухим климатом и соблюдением необходимых мер по предохранению покрытий от увлажнения. Мансардные крыши применяются при использовании чердака для жилья или хозяйственных помещений.
78140. Перегородки жилых и общественных зданий 1019 KB
  Перегородки представляют собой ненесущие стены, предназначенные для деления в пределах этажа больших, ограниченных капитальными стенами, объемов на отдельные помещения.