67573

Смежные классы; разложение группы по подгруппе

Лекция

Математика и математический анализ

Множество xH называется левым а Hx правым смежным классом группы по подгруппе. Например очевидно что H=H=H так что подгруппа Н сама является одним из смежных классов. Свойства смежных классов Отображение определенное формулой является взаимно однозначным для всякого.

Русский

2014-09-12

179.5 KB

20 чел.

Лекция 2

Смежные классы;  разложение группы по подгруппе.

Условимся о следующих обозначениях. Если A и B два подмножества группы G, то A*B обозначает множество всевозможных произведений элементов первого из них на элементы второго, а  - множество всех обратных элементов из A. В этих обозначениях, например, условие, при котором A является подгруппой G можно записать в виде:

Определение

Пусть x некоторый фиксированный элемент  группы G, а H - любая ее подгруппа. Множество  x*H называется левым, а H*x - правым смежным классом группы по подгруппе.

Например, очевидно, что *H=H*=H, так что подгруппа Н сама является одним из смежных классов.

Свойства смежных классов

Отображение, определенное формулой  является взаимно однозначным для всякого .

Каждый элемент x входит в смежный класс x*H.

Если y входит в смежный класс x*H , то y*H=x*H

Если y не входит в смежный класс x*H, то

(Свойства 1- 4 сформулированы для левых смежных классов, но аналогичными свойствами обладают и правые).

Доказательство. 

  сюръективно по определению смежного класса. Если,  то есть , то по закону сокращения, то есть  инъективно.

Поскольку   входит в подгруппу H, x=x*   входит в смежный класс x*H.

Пусть y=x*h и , то есть z=  Тогда z=(x*h)*  = x*(h*) и значит входит в класс x*H. Таким образом, . Обратное включение вытекает из того, что  и значит входит в y*H.

Докажем от противного. Пусть классы x*H и y*H пересекаются и элемент z входит в каждый из них,  так что . Тогда  что противоречит нашему предположению.

Следствие

Если подгруппа H конечна, то все левые смежные классы содержат одинаковое число элементов, равное порядку этой подгруппы. (Следует из свойства 1.)

В качестве примера рассмотрим группу перестановок из 3 элементов. Составим для нее таблицу умножения. Эта группа состоит из 6 элементов .

Клетка таблицы, стоящая в i-ой строке и в j- ом столбце содержит номер элемента, равного . Она имеет следующий вид:

Рассмотрим подмножество H в состоящее из элементов  и . (Будем писать: H={1,2}). Легко видеть, что H - подгруппа. (Заметим, что ). Пользуясь таблицей умножения находим левые смежные классы:

 ,,. Таким образом, имеем 3 различных левых смежных класса {1,2}, {3,4}, {5,6}. Аналогично строятся правые смежные классы: {1,2}, {3,5}, {4,6}.

Возьмем теперь  {1,4,5}. - подгруппа четных перестановок .  Для нее левые и правые смежные классы совпадают и состоят из элементов {1,4,5} и {2,3,6}.

Определение

Индексом [G:H] подгруппы H в группе G называется количество различных левых смежных классов G по H (если оно конечно).

Теорема Лагранжа

Если G конечная группа и H ее подгруппа, то

ord(G)={G:H]*ord(H)

(Здесь ord( ) обозначает порядок группы).

Доказательство

Пусть  - полный перечень левых смежных классов G по H и класс  содержит элементы . Тогда m - индекс [G:H] , а n - порядок H (по следствию из предыдущей теоремы). По свойству 3. все элементы  попарно различны и по свойству 2. исчерпывают список  элементов группы G. Значит, m*n=ord(G), что и требовалось.

Следствие

Порядок подгруппы делит порядок конечной группы.

В самом деле, число ord(G)/ord(H)=[G:H] является целым.

Замечания о таблицах умножения

Мы уже видели, что работая с конкретной конечной группой G, удобно иметь перед глазами ее таблицу умножения. Эта таблица называется таблицей Кэли. Ее можно построить для всякой АО на конечном множестве.  Для этого элементы множества надо занумеровать: . В  i- ой  строке  таблицы записываются элементы: .  Заметим, что  в случае, если АО превращает множество в группу G, все эти элементы попарно различны, как это вытекает из закона сокращения. Поскольку их число равно порядку G, каждая строка таблицы Кэли является некоторой перестановкой элементов группы . Например, если для группы условиться, что , первая строка будет  тождественной перестановкой. Аналогично, перестановкой элементов группы будет и каждый столбец. В частности, таблица не имеет одинаковых строк или столбцов. Оказывается, что если элементу  множества сопоставить i - ую строку таблицы Кэли, то произведению  (произведение относительно АО !) , будет в случае, если АО ассоциативна,  отвечать перестановка, равная произведению соответствующих перестановок. В самом деле, по правилу перемножения перестановок имеем: 

 

Некоторые свойства АО наглядно проявляются в устройстве ее таблицы Кэли. Например, коммутативность умножения проявляется в симметричности таблицы относительно главной диагонали. Напротив, свойство ассоциативности не имеет столь наглядной интерпретации в устройстве ее таблицы умножения.

Нормальные подгруппы

Пусть G - произвольная группа и H - ее подгруппа. Рассмотрим множество{ } всех попарно различных левых смежных классов G по H.

Определение

Подгруппа H называется нормальной в G (обозначение: ), если произведение любых двух левых смежных классов также представляет собой левый смежный класс.

Итак, нормальность подгруппы H означает, что

Произведение (x*H)*(y*H) содержит, в частности, элемент (x*e)*(y*e)=x*y  и значит, если это произведение является смежным классом, это может быть только класс (x*y)*H. Поэтому определение нормальной подгруппы принимает следующий вид: H нормальна в G, если для любых x и y

(x*H)*(y*H)=(x*y)*H.                                                                              (1)

Теорема (признак нормальной подгруппы)

H нормальна в G тогда и только тогда, когда  выполнено следующее условие: каждый правый смежный класс H*x совпадает с левым смежным классом x*H.

Доказательство

Пусть H нормальна в G то есть выполнено (1). Возьмем  в этом равенстве x=e, тогда получаем, что H*y*H=y*H, откуда следует, что.Запишем это равенство для элемента : . Умножая это включение слева и справа на y получим : , то есть .  Таким образом, классы H*y  и  y*H  совпадают. Обратно, если H*y=y*H, то (x*H)*(y*H)=x*(H*y)*H=x*(y*H)*H= (x*y)*H*H = (x*y)*H, то есть (1) выполнено.

Замечание 1.

Равенство H*x=x*H можно записать в равносильной форме:  . Проверим, что множество , стоящее в левой части этого равенства  является подгруппой в G для всякого . Используем признак подгруппы :   так как H является подгруппой и потому .

Каждая из подгрупп  называется подгруппой сопряженной с H. Условие нормальности поэтому можно еще сформулировать так.  Подгруппа H группы G нормальна, если

Замечание 2.

В коммутативной группе левые и правые смежные классы очевидно совпадают и потому в этом случае любая подгруппа будет нормальной. В некоммутативном случае могут встречаться и подгруппы, не являющиеся нормальными. Например, вернемся к группе  и ее подгруппе H. Как мы видели выше, левые {1,2}; {3,4); {5,6} и правые

{1,2}; {3,5}; {4,6} классы по этой подгруппе не совпадают и значит H нормальной не является. Легко посчитать, что, например, {3,4}*{5,6}={1,2,5,6} так что это множество смежным классом не является. Напротив,  - нормальная подгруппа в   и ее классы

={1,4,5} и ={2,3,6) перемножаются по правилу.

Факторгруппа

Пусть H - нормальная подгруппа группы G. Обозначим через G/H множество всех попарно различных смежных классов (безразлично,  левых или правых). Как нам известно, (x*H)*(y*H)=(x*y)*H, так что на множестве G/H определена АО. Эта операция, очевидно, ассоциативна. Поскольку H=, H*(x*H)=(x*H)*H=x*H и значит смежный класс H является нейтральным элементом для этой АО. Наконец,

так что каждый смежный класс обратим. Поэтому G/H оказывается группой, называемой факторгруппой группы G по нормальной подгруппе H.

Примеры

Мы уже построили выше факторгруппу S(3)/A(3). Имеется 2 смежных класса  и  с таблицей умножения: 

2.  Каждый левый смежный класс A*SL(n,R) в группе GL(n,R) состоит из всех матриц, определитель которых равен d=det(A). Аналогичное описание верно и для правого класса SL(n,R)*A, который, таким образом, совпадает с левым и SL(n,R) GL(n,R). Обозначим этот смежный класс символом C(d). Здесь d - любое ненулевое вещественное число. Поскольку при перемножении матриц их определители также перемножаются, C(d)*C(b)=C(db). Этим полностью описана факторгруппа GL(n,R)/SL(n,R).

3.  Пусть n=1, 2, ... , Целые числа кратные n образуют подгруппу nZ группы Z. Так как группа Z коммутативна, эта подгруппа нормальна. Каждый смежный класс p+nZ состоит из всех целых чисел, дающих при делении на n такой же остаток r что и число p. Обозначим этот смежный класс символом C(r) Поскольку  r=0, 1, ... (n-1), факторгруппа имеет порядок n. При этом C(r)+C(s)=C(r+s), причем имеется в виду, что если r+s>n-1, необходимо заменить r+s  на r+s-n (сложение по модулю n).    


 

А также другие работы, которые могут Вас заинтересовать

3696. Использование теории мотивации в управлении предприятием 144 KB
  Любые социальные организмы, будь то фирма, социальный институт или государство на определенном этапе своего развития сталкиваются с неизбежным барьером предельной производительности. Исходящий продукт уже не может быть усовершенствован как ...
3697. Методики проведения функционально-системного анализа 145 KB
  Введение В настоящее время существует различные мнения об эффективности применения функционально-стоимостного анализа (ФСА) или в английской аббревиатуре АВС. Одни пользователи считают ФСА достаточно сложным для понимания и применения. Другие,...
3698. Право интеллектуальной собственности 131 KB
  Введение Данная курсовая работа посвящена праву интеллектуальной собственности. Она является очень важной и актуальной, так как одним из главных показателей цивилизованного общества во все времена было и продолжает оставаться то, какое внимание удел...
3699. Акции и акционерные общества в новой модели хозяйствования 132 KB
  Приватизация в России проводилась как стратегическое преобразование, посредством которого «ничейную» якобы и потому малоэффективную собственность следовало передать действенным и эффективным собственникам, а те, обретя «чувство хозяина», до...
3700. Активные операции коммерческих банков 204 KB
  Банки - центры, где в основном начинается и завершается деловое партнерство. От четкой грамотной деятельности банков зависит в решающей мере здоровье экономики. Без развитой сети банков, действующих именно на коммерческой основе, стремление...
3701. Александр I Российский император 139.5 KB
  Александр I Четырнадцатый по счету российский император Александр I, или, как его называли в народе, Александр Благословенный, - одна из самых загадочных и противоречивых фигур в истории нашего государства. Первенец наследника престола Павла родился...
3702. Александр I – император и человек 177.5 KB
  Становление Александр I, император всероссийский, старший сын императора Павла Петровича и Марии Федоровны, родился 12 декабря 1777 года. Радостно встречена была народом весть о рождении первенца у наследника престола: прямое престолонаследие, казал...
3703. Экзогенный аллергический альвеолит 125 KB
  Распространенность Экзогенный аллергический альвеолит (ЭАА), или гиперчувствительный пневмонит, включает в себя группу близких интерстициальных заболеваний легких, характеризующихся преимущественно диффузными воспалительными изменениями легочной пар...
3704. Анализ текущего финансового состояния предприятия (на примере МП Товары для детей) 306.5 KB
  Финансовый анализ является существенным элементом финансового менеджмента и аудита. Практически все пользователи финансовых отчетов предприятий используют результаты финансового анализа для принятия решений по оптимизации своих интересов. С...