67575

Циклические группы

Лекция

Математика и математический анализ

Определение Группа G называется циклической если все ее элементы являются степенями одного элемента. Примеры циклических групп: Группа Z целых чисел с операцией сложения. Группа всех комплексных корней степени n из единицы с операцией умножения. Поскольку группа является циклической и элемент g = образующий.

Русский

2014-09-12

169 KB

7 чел.

Лекция 4

Циклические группы.

Определение

Группа G называется циклической, если все ее элементы являются степенями одного элемента . Этот элемент g называется образующим циклической группы G.

Примеры циклических групп:

Группа  Z  целых чисел с операцией сложения.

Группа   всех комплексных корней степени n из единицы с операцией умножения. Поскольку , группа является циклической и элемент g=  -образующий .

Мы видим, что циклические группы могут быть как конечными так и бесконечными.

Пусть (G,*) - произвольная группа и произвольный элемент. Множество   является циклической группой с образующим элементом g . Она называется циклической подгруппой, порожденной элементом g, а ее порядок  - порядком элемента g. По теореме Лагранжа порядок элемента является делителем порядка группы. Отображение

    действующее по формуле: , очевидно является

    гомоморфизмом и его образ совпадает с . Отображение  сюръективно      тогда и только тогда, когда группа G - циклическая и g ее образующий элемент. В этом случае будем называть  стандартным гомоморфизмом для циклической группы G c выбранной образующей g . 

Применяя в этом случае теорему о гомоморфизме,  мы получаем важное свойство циклических групп: всякая циклическая группа является гомоморфным образом группы Z .

Поскольку , всякая циклическая группа коммутативна и мы будем использовать аддитивную запись, так что n-ая степень g будет выглядеть как ng и называться n-кратным элемента g, а нейтральный элемент G мы будем называть нулем и обозначать 0.  

Условимся еще о следующем обозначении. Если F произвольная  группа, записанная аддитивно, то nF будет обозначать подмножество, элементами которого являются n-кратные элементов из F. Если группа F коммутативна, то nF - подгруппа F поскольку  n(x-y)=nx-ny.

Теорема о подгруппах группы Z

Если H -подгруппа группы Z , то H=nZ , где n - некоторое неотрицательное целое число и значит H - циклическая группа с образующим элементом n.

Доказательство:

Если H-тривиальная подгруппа, то теорема верна и n=0. Пусть H нетривиальна. В этом случае в H содержатся ненулевые числа и  противоположные к ним, а значит и положительные целые. Обозначим наименьшее из них буквой n. Тогда . Если  - любое число, то разделив m на n с остатком, получим: m=kn+r, причем . Но тогда r=m-kn и значит r=0. Поэтому H =nZ , что и требовалось. 

Замечание.

Если k 0 - любое целое, то отображение  определенное формулой  является изоморфизмом и отображает подгруппу  на подгруппу  , а значит определяет изоморфизм .

Теорема о структуре циклических групп

Всякая бесконечная циклическая группа изоморфна Z . Всякая конечная циклическая группа порядка n изоморфна Z/nZ.

Доказательство.

Как было отмечено выше, всякая циклическая группа G изоморфна Z/H, где H - некоторая подгруппа Z. По предыдущей теореме H=nZ, где . Если n=0, G изоморфна Z и, следовательно, бесконечна. Если n>0, Z разбивается на n смежных классов: nZ, nZ+1, nZ+2, ..., nZ+(n-1) и потому факторгруппа Z/H имеет порядок n.

В дальнейшем группу Z/nZ будем обозначать . В частности, .

Отметим, что в наших обозначениях,  - тривиальная группа.

Элементами конечной группы  по определению являются смежные классы:

{nZ, nZ+1, ... , nZ+n-1}, которые обозначаются  и называются вычетами по модулю n , а операция в - сложением по модулю n.

Теорема о подгруппах группы (n>0).

Если H подгруппа группы , то H=  причем n делится на m нацело. Порядок H равен  =d , и значит .

Доказательство.

Рассмотрим стандартный гомоморфизм . K= - подгруппа Z и значит K=mZ для некоторого целого m. Отсюда следует, что H= . При этом  и потому n=dm где d -  целое.  По теореме о гомоморфизме  .

Из доказанных теорем следует, что всякая подгруппа циклической группы циклична. Мы видим также, что для каждого целого d, делящего порядок n конечной циклической группы имеется и притом ровно одна подгруппа порядка d, то есть для конечных циклических групп справедлива теорема обратная теореме Лагранжа.

Дальнейшее изучение структуры циклических групп опирается на один результат о делимости целых чисел, который мы сейчас и изложим.

Напомним, что для любых целых n и m определен их наибольший общий делитель d=(n,m). Если n 0 и m 0, то d - это наибольшее целое число на которое без остатка делятся  n и m. (0,m)=(m,0)=m по определению. Числа, для которых (n,m)=1 называются взаимно простыми.

Основная теорема теории делимости.

Если числа n и m взаимно просты, то можно подобрать два таких целых x и y, что  xn+ym=1.

*Доказательство.

Поскольку числа n и m ненулевые, nn+0m= >0. Значит среди чисел вида xn+ym есть положительные. Пусть s=xn+ym - наименьшее положительное число этого вида. Предположим, что s>1. Тогда s> (n,m) и потому либо n либо m (пусть n) не делится на s нацело. Значит n=ks+r, где 0< r<s. В этом случае r=n-ks = n-k(xn+ym)= (1-kx)n+(-ky)m. Это противоречит выбору числа s и значит, s=1.

Следствие.

Для всяких целых n и m можно подобрать такие целые x и y, что xn+ym=(n,m).

В самом деле , если n или m равно 0, то утверждение очевидно. Если же (n,m)>0, то числа  и   взаимно просты и по доказанной теореме для подходящих x и y имеем: , откуда и следует сформулированный результат.*

Теорема о порядках элементов конечных циклических групп.

Пусть p0 любое целое. Вычет в группе  имеет порядок v=n/(n,p).

Доказательство.

Пусть (n,p)=d. Поскольку p/d - целое число, имеем: ===, откуда следует, что порядок не превосходит v. С другой стороны, если порядок  равен k, то k=, то есть kp делится на n. По основной теореме теории делимости d=xn+yp и значит kd=kxn+ykp также делится на n. Но если k<v=n/d , то 0<kd<n не может делиться на n.

Следствие.

В группе  образующими элементами являются в точности те вычеты, для которых (n,p)=1.

Заметим также, что образующими элементами в Z являются , очевидно, только 1 и -1.

В качестве еще одного применения основной теоремы теории делимости приведем интересный пример конечной группы. Рассмотрим множество  тех вычетов  по модулю n, для которых (m,n)=1. Проверим, что относительно умножения по модулю n эти вычеты составляют группу, называемую мультипликативной группой вычетов по модулю n. Ассоциативность умножения очевидна. Также очевидно, что вычет  является нейтральным элементом. Остается проверить наличие обратного элемента. Пусть . По основной теореме найдутся такие x и y, что xm+yn=1. Переходя к вычетам, находим: = , откуда видно, что .

Группа не всегда циклична. Например, легко проверить, что все 3 нетривиальных элемента группы  имеют порядок 2 и потому она не является циклической.

Наконец, отметим один полезный результат непосредственно вытекающий из доказанного выше.

Теорема о структуре групп простого порядка.

Если порядок конечной группы G равен простому числу p, то  .

Доказательство.

Пусть  - любой элемент, отличный от нейтрального. Поскольку порядок x больше 1 и является делителем p, то он равен p и значит .


 

А также другие работы, которые могут Вас заинтересовать

8722. Деятельность и общение 32.5 KB
  Деятельность и общение. Вариант 1 Деятельность - это форма активности человека, направленная на преобразование им окружающего мира. Общение - это процесс обмена информацией между равноправными субъектами деятельности. Виды общения...
8723. Социальные нормы и отклоняющееся поведение 40.5 KB
  Социальные нормы и отклоняющееся поведение. Вариант 1 Социальные нормы - это установленные в обществе правила, образцы, эталоны поведения людей, регулирующие общественную жизнь. Виды социальных норм: Нормы морали - это т...
8724. Познание, истина и ее критерии 52 KB
  Познание, истина и ее критерии. Вариант 1 Познание - это процесс деятельности человека, основным содержанием которой является отражение объективной реальности в его сознании, а результатом - получение нового знания об окружающем мире. Виды...
8725. Научное познание. Значение научной теории 48 KB
  Научное познание. Значение научной теории. Вариант 1 Наука - это форма человеческого познания. Наука - теоретически систематизированные взгляды на окружающий мир, воспроизводящие его существенные стороны в абстрактно-логической форме...
8726. Ненаучное познание 40 KB
  Ненаучное познание Вариант 1 Миф - древнее народное сказание о богах, легендарных героях и явлениях природы. Попытка объяснения прошлого, настоящего, и будущего. Утверждалась система правил и ценностей, принятых в данном обществе. Служили спосо...
8727. Особенности социального познания. Конкретно-исторический подход к социальным явлениям 48.5 KB
  Особенности социального познания. Конкретно-исторический подход к социальным явлениям Вариант 1 Познание - процесс деятельности человека, основным содержанием которого является отражение объективной реальности в его сознании, а результатом
8728. Социальная структура. Тенденции изменения социальной структуры российского общества 47 KB
  Социальная структура. Тенденции изменения социальной структуры российского общества Вариант 1 Социальная (стратификационная) структура - расслоение и иерархическая организация различных слоев общества, а также совокупность институтов и отношений меж...
8729. Социальный статус личности. Социальные роли личности 34.5 KB
  Социальный статус личности. Социальные роли личности Вариант 1 Социальный статус - это положение в обществе, связанное с определенной совокупностью прав и обязанностей. Статусы бывают: предписанные (национальность, место рождения, социаль...
8730. Духовное производство и духовное потребление 36.5 KB
  Духовное производство и духовное потребление Вариант 1 Духовное производство - деятельность сознания в особой общественной форме, осуществляемое специализированными группами людей, которые профессионально заняты квалифицированным умственным тру...