67576

Коммутативные группы с конечным числом образующих

Лекция

Математика и математический анализ

Группа Q рациональных чисел с операцией сложения не является г.к.о. В самом деле, если - любые рациональные числа, записанные в виде отношения целых, то, приводя к общему знаменателю сумму, получим дробь, знаменатель которой не превосходит...

Русский

2014-09-12

181.5 KB

3 чел.

Лекция№5

Коммутативные группы с конечным числом образующих.

Часть первая: общая теория

Определение

Элементы  коммутативной группы G называются ее системой образующих (с.о.) , если каждый элемент можно записать в виде: , где  . Группа, имеющая систему образующих, называется группой с конечным числом образующих (г.к.о.)

Примеры.

Циклическая группа - группа с одной образующей.

Группа   всех n-мерных векторов с целочисленными координатами с операцией сложения имеет стандартную с.о. e= , где - вектор, у которого единственная ненулевая координата - i ая , равная 1.

Отметим, что Z . Будем также считать, что   - тривиальная группа.

Система {3,7} - является с.о. группы Z . Это вытекает из тождества: m= m*7+(-2m)*3 .

Всякая конечная абелева группа является г.к.о. так как за систему образующих можно взять, например, все элементы этой группы.

Группа Q рациональных чисел с операцией сложения не является г.к.о.  В самом деле, если  - любые рациональные числа, записанные в виде отношения целых, то,  приводя к общему знаменателю сумму , получим дробь, знаменатель которой не превосходит N= . Поэтому любая несократимая дробь с большим чем N знаменателем не является целочисленной линейной комбинацией данных рациональных чисел и они не образуют с.о.

Пусть G- группа с с.о. . Определим отображение  формулой: . Очевидно, что   является сюръективным гомоморфизмом. Будем называть стандартным гомоморфизмом для группы G c заданной с.о.. Он отображает стандартную с.о. группы  в заданную с.о. группы G. Из существования стандартного гомоморфизма вытекает, что любая г.к.о. является гомоморфным образом группы  . Отметим еще, что если - сюръективный гомоморфизм, то - с.о. группы K. Поэтому гомоморфный образ г.к.о. является г.к.о.

Теорема о подгруппах г.к.о.

Всякая подгруппа H группы G с с.о.  допускает конечную с.о. , причем .

Доказательство.

Проведем индукцию по числу n образующих группы G . При n=1 G -циклическая группа и для нее теорема верна, так как всякая ее подгруппа циклична. Пусть для групп с (n-1) образующей теорема уже доказана; рассмотрим случай сформулированный в теореме. Определим множество

. Легко проверить, что - подгруппа и потому P=kZ, где . Если k>0 выберем  так, чтобы . Пусть - подмножество G, состоящее из всевозможных линейных комбинаций , где все  . Очевидно, что - подгруппа G с (n-1) образующей. Пусть также - подгруппа . По предположению индукции  допускает конечную с.о. , где . Если k=0, и теорема доказана. Предположим, что k>0. Докажем тогда, что - с.о. подгруппы H. Пусть - произвольный элемент. Тогда h= . Значит,

=и потому=, откуда  и теорема полностью доказана.

Итак, любая подгруппа г.к.о. является г.к.о. Укажем удобный способ задания группы G с заданной с.о.  с помощью матриц. Рассмотрим стандартный гомоморфизм . Тогда H=Ker- подгруппа г.к.о. и потому имеет конечную с.о. . Поскольку  , можно записать: , где . Матрица  с этими элементами полностью описывает подгруппу H, а, следовательно, и группу G.

Примеры.

Пусть G=- циклическая группа с образующей g. Стандартный гомоморфизм  имеет ядро nZ с образующей n. Здесь - (11) матрица (n).

Пусть G=- мультипликативная группа вычетов по модулю 20. Эта группа состоит из 8 элементов: {1, 3,7,9,11,13,17,19} ( для упрощения записи мы не ставим черту над соответствующим вычетом). Циклическая подгруппа Z(3) как нетрудно видеть состоит из элементов 1, 3, 9, 7; циклическая группа Z(13) - из элементов 1, 13, 9,17. Поскольку 3*13=19 и *13=11, мы видим, что каждый элемент из  может быть записан в виде , то есть {3, 13} -с.о. группы G. Стандартный гомоморфизм     

действует по формуле: . Ядро этого гомоморфизма  состоит из таких двумерных векторов , для которых  =1, то есть элементы и должны быть взаимно обратными. Это возможно только когда оба вычета равны 1 или 9, что соответствует значениям n=4p; m=4q или n=4p+2; m=4q+2 (). Отсюда видно, что в качестве образующих  можно выбрать элементы и  . Поэтому получаем: .

Замечание.

Построение матрицы  для данной г.к.о. G зависит от выбора с.о. группы G и подгруппы . Существует стандартный способ изменения с.о. - выполнение элементарных преобразований (э.п.). Как известно, имеются 3 типа элементарных преобразований: перестановка образующих, умножение одной из образующих на число p и прибавление к одной образующей кратного другой. Для того, чтобы при этих преобразованиях снова получалась с.о. необходима их обратимость. Поэтому число p может быть равно только 1 или -1. Выполнение  э.п. с.о. G приводит к преобразованиям строк матрицы , а э.п. с.о. H приводят к преобразованиям столбцов той же матрицы. Назовем две целочисленные матрицы эквивалентными, если одна из них получается из другой э.п. строк и столбцов . Из сказанного выше вытекает, что эквивалентные матрицы отвечают одной и той же группе. Отметим еще, что если B- любая , то взяв в качестве -множество всевозможных целочисленных комбинаций столбцов B и образовав факторгруппу G=  мы придем к группе, для которой =B. Таким образом, любая целочисленная матрица определяет некоторую г.к.о.

 


 

А также другие работы, которые могут Вас заинтересовать

73826. Операции над матрицами 1.17 MB
  Элементами матрицы могут являться числа алгебраические символы или математические функции. Например матрицы используется для решения систем алгебраических и дифференциальных уравнений нахождения значений физических величин в квантовой теории шифрования сообщений в Интернете. Строки матрицы нумеруются сверху вниз а столбцы слева направо.
73827. Системы уравнений в линейной алгебре 467.5 KB
  Если это определение озвучить в терминах определителей то оно будет выглядеть примерно так: Матрица размера m×n имеет ранг r если существует хотя бы один отличный от нуля определитель rго порядка тогда как определитель любой подматрицы более высокого порядка равен нулю. Для вычисления ранга матрицы можно использовать метод элементарных преобразований строк и столбцов в точности тот самый метод который применяется для вычисления определителей. Целью элементарных преобразований является приведение матрицы к...
73828. Модель затраты- выпуск (модель В. Леонтьева) 121 KB
  Либо не весь объём производства расходуется на потребление и его достаточно для расширения производства тех видов продукции на которые имеется растущий спрос либо объём производства недостаточен для воспроизводства трудового ресурса на постоянном уровне. Свойство наличия баланса состоит как раз в том что полные объёмы всей продукции складываются только из объёмов её конечного потребления и объёмов потребления продукции в производственных процессах межотраслевых потоков. Примером такой взаимосвязи может служить например потребление с х...
73829. Комплексные числа 388 KB
  Определение комплексного числа. Первая компонента комплексного числа действительное число называется действительной частью числа это обозначается так; вторая компонента действительное число называется мнимой частью числа. Два комплексных числа и равны тогда и только тогда когда равны их действительные и мнимые части.
73830. Многочлены -ой степени 536.5 KB
  Многочленом ой степени называется функция где постоянные комплексные числа коэффициенты многочлена комплексная переменная. Число в котором многочлен принимает нулевое значение называется корнем многочлена. Представим в виде многочлена по степеням. Очевидно отсюда следует утверждение: для того чтобы число было корнем многочлена необходимо и достаточно чтобы коэффициент при нулевой степени в разложении по степеням был равен нулю: .
73831. Линейные пространства 451.5 KB
  Обозначим множества векторов направленных отрезков на прямой на плоскости в пространстве соответственно с обычными операциями сложения векторов и умножения векторов на число. Вместо свободных векторов можно рассмотреть соответствующие множества радиус-векторов. Например множество векторов на плоскости имеющих общее начало т. Множество радиус-векторов единичной длины не образует линейное пространство так как для любого из этих векторов сумма не принадлежит рассматриваемому множеству.
73832. Проектирование операционных технологических процессов обработки заготовок 67.5 KB
  обработки позволяет правильно выбрать станок из имеющегося парка или по каталогу. По типу обработки устанавливают группу станков: токарный сверлильный В соответствии с назначением станка его компоновкой степенью автоматизации определяют тип станка: токарный одношпиндельный многошпиндельный револьверный полуавтомат и т. Если эти требования выполнимы на различных станках то при выборе учитывают следующие факторы: 1 соответствие основных размеров станка габаритным размерам обрабатываемой заготовки или нескольких одновременно...