67576

Коммутативные группы с конечным числом образующих

Лекция

Математика и математический анализ

Группа Q рациональных чисел с операцией сложения не является г.к.о. В самом деле, если - любые рациональные числа, записанные в виде отношения целых, то, приводя к общему знаменателю сумму, получим дробь, знаменатель которой не превосходит...

Русский

2014-09-12

181.5 KB

4 чел.

Лекция№5

Коммутативные группы с конечным числом образующих.

Часть первая: общая теория

Определение

Элементы  коммутативной группы G называются ее системой образующих (с.о.) , если каждый элемент можно записать в виде: , где  . Группа, имеющая систему образующих, называется группой с конечным числом образующих (г.к.о.)

Примеры.

Циклическая группа - группа с одной образующей.

Группа   всех n-мерных векторов с целочисленными координатами с операцией сложения имеет стандартную с.о. e= , где - вектор, у которого единственная ненулевая координата - i ая , равная 1.

Отметим, что Z . Будем также считать, что   - тривиальная группа.

Система {3,7} - является с.о. группы Z . Это вытекает из тождества: m= m*7+(-2m)*3 .

Всякая конечная абелева группа является г.к.о. так как за систему образующих можно взять, например, все элементы этой группы.

Группа Q рациональных чисел с операцией сложения не является г.к.о.  В самом деле, если  - любые рациональные числа, записанные в виде отношения целых, то,  приводя к общему знаменателю сумму , получим дробь, знаменатель которой не превосходит N= . Поэтому любая несократимая дробь с большим чем N знаменателем не является целочисленной линейной комбинацией данных рациональных чисел и они не образуют с.о.

Пусть G- группа с с.о. . Определим отображение  формулой: . Очевидно, что   является сюръективным гомоморфизмом. Будем называть стандартным гомоморфизмом для группы G c заданной с.о.. Он отображает стандартную с.о. группы  в заданную с.о. группы G. Из существования стандартного гомоморфизма вытекает, что любая г.к.о. является гомоморфным образом группы  . Отметим еще, что если - сюръективный гомоморфизм, то - с.о. группы K. Поэтому гомоморфный образ г.к.о. является г.к.о.

Теорема о подгруппах г.к.о.

Всякая подгруппа H группы G с с.о.  допускает конечную с.о. , причем .

Доказательство.

Проведем индукцию по числу n образующих группы G . При n=1 G -циклическая группа и для нее теорема верна, так как всякая ее подгруппа циклична. Пусть для групп с (n-1) образующей теорема уже доказана; рассмотрим случай сформулированный в теореме. Определим множество

. Легко проверить, что - подгруппа и потому P=kZ, где . Если k>0 выберем  так, чтобы . Пусть - подмножество G, состоящее из всевозможных линейных комбинаций , где все  . Очевидно, что - подгруппа G с (n-1) образующей. Пусть также - подгруппа . По предположению индукции  допускает конечную с.о. , где . Если k=0, и теорема доказана. Предположим, что k>0. Докажем тогда, что - с.о. подгруппы H. Пусть - произвольный элемент. Тогда h= . Значит,

=и потому=, откуда  и теорема полностью доказана.

Итак, любая подгруппа г.к.о. является г.к.о. Укажем удобный способ задания группы G с заданной с.о.  с помощью матриц. Рассмотрим стандартный гомоморфизм . Тогда H=Ker- подгруппа г.к.о. и потому имеет конечную с.о. . Поскольку  , можно записать: , где . Матрица  с этими элементами полностью описывает подгруппу H, а, следовательно, и группу G.

Примеры.

Пусть G=- циклическая группа с образующей g. Стандартный гомоморфизм  имеет ядро nZ с образующей n. Здесь - (11) матрица (n).

Пусть G=- мультипликативная группа вычетов по модулю 20. Эта группа состоит из 8 элементов: {1, 3,7,9,11,13,17,19} ( для упрощения записи мы не ставим черту над соответствующим вычетом). Циклическая подгруппа Z(3) как нетрудно видеть состоит из элементов 1, 3, 9, 7; циклическая группа Z(13) - из элементов 1, 13, 9,17. Поскольку 3*13=19 и *13=11, мы видим, что каждый элемент из  может быть записан в виде , то есть {3, 13} -с.о. группы G. Стандартный гомоморфизм     

действует по формуле: . Ядро этого гомоморфизма  состоит из таких двумерных векторов , для которых  =1, то есть элементы и должны быть взаимно обратными. Это возможно только когда оба вычета равны 1 или 9, что соответствует значениям n=4p; m=4q или n=4p+2; m=4q+2 (). Отсюда видно, что в качестве образующих  можно выбрать элементы и  . Поэтому получаем: .

Замечание.

Построение матрицы  для данной г.к.о. G зависит от выбора с.о. группы G и подгруппы . Существует стандартный способ изменения с.о. - выполнение элементарных преобразований (э.п.). Как известно, имеются 3 типа элементарных преобразований: перестановка образующих, умножение одной из образующих на число p и прибавление к одной образующей кратного другой. Для того, чтобы при этих преобразованиях снова получалась с.о. необходима их обратимость. Поэтому число p может быть равно только 1 или -1. Выполнение  э.п. с.о. G приводит к преобразованиям строк матрицы , а э.п. с.о. H приводят к преобразованиям столбцов той же матрицы. Назовем две целочисленные матрицы эквивалентными, если одна из них получается из другой э.п. строк и столбцов . Из сказанного выше вытекает, что эквивалентные матрицы отвечают одной и той же группе. Отметим еще, что если B- любая , то взяв в качестве -множество всевозможных целочисленных комбинаций столбцов B и образовав факторгруппу G=  мы придем к группе, для которой =B. Таким образом, любая целочисленная матрица определяет некоторую г.к.о.

 


 

А также другие работы, которые могут Вас заинтересовать

8697. Світові релігії. Буддизм 55 KB
  Світові релігії. Буддизм План 1. Витоки буддизму. 2. Догмати буддизму: а. Картина світу очима послідовників буддизму б. Вчення про душу в буддизмі в. Ставлення до земного життя будистів г. Шлях до порятунку через основні правила будизму 3. Мораль ре...
8698. Світові релігії. Іслам 85.5 KB
  Світові релігії. Іслам План 1. Витоки ісламу. 2.Особливості віровчення ісламу. 3.Обрядність ісламу. 4. Етапи життя мусульманина. Принципи і мораль мусульманства. Іслам - наймолодша світова релігія. За даними всесвітньої ісламської ліги 1980...
8699. Світові релігії. Християнство. Розкол християнства, його гілки 127 KB
  Світові релігії. Християнство План. 1. Християнство, його віровчення і культ. 2. Нехристиянські джерела про виникнення християнства. 3. Розкол християнства, його гілки. 4. Етапи життя мусульманина. Принципи і мораль мусульманства. Християнство Христ...
8700. Культура середньовічного суспільства Київської Русі: Від язичництва до християнства 93 KB
  Дохристиянські вірування східних словян. Поширення християнства на території Східної Європи і причини його розповсюдження. Прийняття християнства за Володимира Святославовича...
8701. Сучасна релігійна ситуація в Україні 92 KB
  Сучасна релігійна ситуація в Україні План. Християнські конфесії в Україні. Православний вузол України. Протестантські церкви в Україні. Мусульманські та іудейські громади в Україні. Громади нетрадиційної релігійності, їхні...
8702. О граде божьем. ок. 426 н.э. (Августин Блаженный) 4.49 MB
  О граде божьем. ок.426 н.э. (Августин Блаженный) Предисловие В этом сочинении, любезнейший сын мой Марцеллин, тобою задуманном, а для меня, в силу данного мною обещания, обязательном, я поставил своей задачей защитить град Божий, славнейший как в ...
8703. Августин Блаженный О свободе воли 234.5 KB
  Sanctus Aurelius Augustinus De libero arbitrio (Перевод выполнен по изданию Ермаковой М.Е.) Августин Блаженный О свободе воли Книга вторая Глава I 1. Эводий. Итак, разъясни мне, если это возможно, почему Бог дал человеку свободу воли, ибо, если бы ч...
8704. Песня русская в березах, песня русская в хлебах. Конспект 29 KB
  Песня русская в березах, песня русская в хлебах. Если вдуматься в смысл таких выражений, как Вся Россия просится в песню, С песней на Руси родились, С доброй песней и жизнь хороша, то становится очевидным, что жизнь русского человека немы...
8705. Что за прелесть эти сказки. Урок 70 KB
  Что за прелесть эти сказки О обращаясь к литературным источникам, композиторы часто создают на их основе инструментальные произведения. Эти сочинения называют программной музыкой. 0ни нередко имеют название литературного произведения или сопровождаю...