67576

Коммутативные группы с конечным числом образующих

Лекция

Математика и математический анализ

Группа Q рациональных чисел с операцией сложения не является г.к.о. В самом деле, если - любые рациональные числа, записанные в виде отношения целых, то, приводя к общему знаменателю сумму, получим дробь, знаменатель которой не превосходит...

Русский

2014-09-12

181.5 KB

3 чел.

Лекция№5

Коммутативные группы с конечным числом образующих.

Часть первая: общая теория

Определение

Элементы  коммутативной группы G называются ее системой образующих (с.о.) , если каждый элемент можно записать в виде: , где  . Группа, имеющая систему образующих, называется группой с конечным числом образующих (г.к.о.)

Примеры.

Циклическая группа - группа с одной образующей.

Группа   всех n-мерных векторов с целочисленными координатами с операцией сложения имеет стандартную с.о. e= , где - вектор, у которого единственная ненулевая координата - i ая , равная 1.

Отметим, что Z . Будем также считать, что   - тривиальная группа.

Система {3,7} - является с.о. группы Z . Это вытекает из тождества: m= m*7+(-2m)*3 .

Всякая конечная абелева группа является г.к.о. так как за систему образующих можно взять, например, все элементы этой группы.

Группа Q рациональных чисел с операцией сложения не является г.к.о.  В самом деле, если  - любые рациональные числа, записанные в виде отношения целых, то,  приводя к общему знаменателю сумму , получим дробь, знаменатель которой не превосходит N= . Поэтому любая несократимая дробь с большим чем N знаменателем не является целочисленной линейной комбинацией данных рациональных чисел и они не образуют с.о.

Пусть G- группа с с.о. . Определим отображение  формулой: . Очевидно, что   является сюръективным гомоморфизмом. Будем называть стандартным гомоморфизмом для группы G c заданной с.о.. Он отображает стандартную с.о. группы  в заданную с.о. группы G. Из существования стандартного гомоморфизма вытекает, что любая г.к.о. является гомоморфным образом группы  . Отметим еще, что если - сюръективный гомоморфизм, то - с.о. группы K. Поэтому гомоморфный образ г.к.о. является г.к.о.

Теорема о подгруппах г.к.о.

Всякая подгруппа H группы G с с.о.  допускает конечную с.о. , причем .

Доказательство.

Проведем индукцию по числу n образующих группы G . При n=1 G -циклическая группа и для нее теорема верна, так как всякая ее подгруппа циклична. Пусть для групп с (n-1) образующей теорема уже доказана; рассмотрим случай сформулированный в теореме. Определим множество

. Легко проверить, что - подгруппа и потому P=kZ, где . Если k>0 выберем  так, чтобы . Пусть - подмножество G, состоящее из всевозможных линейных комбинаций , где все  . Очевидно, что - подгруппа G с (n-1) образующей. Пусть также - подгруппа . По предположению индукции  допускает конечную с.о. , где . Если k=0, и теорема доказана. Предположим, что k>0. Докажем тогда, что - с.о. подгруппы H. Пусть - произвольный элемент. Тогда h= . Значит,

=и потому=, откуда  и теорема полностью доказана.

Итак, любая подгруппа г.к.о. является г.к.о. Укажем удобный способ задания группы G с заданной с.о.  с помощью матриц. Рассмотрим стандартный гомоморфизм . Тогда H=Ker- подгруппа г.к.о. и потому имеет конечную с.о. . Поскольку  , можно записать: , где . Матрица  с этими элементами полностью описывает подгруппу H, а, следовательно, и группу G.

Примеры.

Пусть G=- циклическая группа с образующей g. Стандартный гомоморфизм  имеет ядро nZ с образующей n. Здесь - (11) матрица (n).

Пусть G=- мультипликативная группа вычетов по модулю 20. Эта группа состоит из 8 элементов: {1, 3,7,9,11,13,17,19} ( для упрощения записи мы не ставим черту над соответствующим вычетом). Циклическая подгруппа Z(3) как нетрудно видеть состоит из элементов 1, 3, 9, 7; циклическая группа Z(13) - из элементов 1, 13, 9,17. Поскольку 3*13=19 и *13=11, мы видим, что каждый элемент из  может быть записан в виде , то есть {3, 13} -с.о. группы G. Стандартный гомоморфизм     

действует по формуле: . Ядро этого гомоморфизма  состоит из таких двумерных векторов , для которых  =1, то есть элементы и должны быть взаимно обратными. Это возможно только когда оба вычета равны 1 или 9, что соответствует значениям n=4p; m=4q или n=4p+2; m=4q+2 (). Отсюда видно, что в качестве образующих  можно выбрать элементы и  . Поэтому получаем: .

Замечание.

Построение матрицы  для данной г.к.о. G зависит от выбора с.о. группы G и подгруппы . Существует стандартный способ изменения с.о. - выполнение элементарных преобразований (э.п.). Как известно, имеются 3 типа элементарных преобразований: перестановка образующих, умножение одной из образующих на число p и прибавление к одной образующей кратного другой. Для того, чтобы при этих преобразованиях снова получалась с.о. необходима их обратимость. Поэтому число p может быть равно только 1 или -1. Выполнение  э.п. с.о. G приводит к преобразованиям строк матрицы , а э.п. с.о. H приводят к преобразованиям столбцов той же матрицы. Назовем две целочисленные матрицы эквивалентными, если одна из них получается из другой э.п. строк и столбцов . Из сказанного выше вытекает, что эквивалентные матрицы отвечают одной и той же группе. Отметим еще, что если B- любая , то взяв в качестве -множество всевозможных целочисленных комбинаций столбцов B и образовав факторгруппу G=  мы придем к группе, для которой =B. Таким образом, любая целочисленная матрица определяет некоторую г.к.о.

 


 

А также другие работы, которые могут Вас заинтересовать

22822. Качество товара, определения. Требования к качеству товара. Классификация свойств и показателей качества. Потребительская ценность продукции: базовая и дополнительная и их влияние на 16.84 KB
  Качество — одна из основополагающих характеристик товара, которая оказывает решающее влияние на создание потребительских предпочтений и формирование конкурентоспособности.
22823. Органічна хімія, конспект лекцій 887 KB
  Значення органічної хімії. Вивчення основних теоретичних положень органічної хімії сприяє формуванню, розширенню і поглибленню фундаментальних, загальнопрофесійних, спеціальних знань, а також активному формуванню предметних і професійних компетенцій, спрямованих на виконання виробничих функцій.
22824. Обязательная сертификация в законе «О техническом регулировании». Ее сущность, объекты, участники. Организация обязательной сертификации 19.03 KB
  Порядок передачи сведений о выданных сертификатах соответствия в единый реестр выданных сертификатов устанавливается федеральным органом исполнительной власти по техническому регулированию...
22825. Государственный контроль и надзор за соблюдением обязательных требований технических регламентов 16.81 KB
  Государственный контроль (надзор) за соблюдением требований технических регламентов осуществляется федеральными органами исполнительной власти, органами исполнительной власти субъектов Российской Федерации
22826. Релаксаційні коливання у схемі з неоновою лампою 86 KB
  Якщо напруга досягне певної величини яка називається напругою запалювання U3 лампа спалахне і струм стрибком досягне скінченої величини I3. Коли напруга спаде до величини U3 лампа не погасне. За другим правилом Кірхгофа для цього кола маємо 1 де Uk напруга на конденсаторі та неоновій лампі яка підключена до нього паралельно.15 видно що напруга на конденсаторі монотонно зростає із швидкістю яка залежить від величини добутку RC.
22827. КАТЕГОРІЙНО-ПОНЯТІЙНИЙ АПАРАТ З БЕЗПЕКИ ЖИТТЄДІЯЛЬНОСТІ, ТАКСОНОМІЯ НЕБЕЗПЕК 92 KB
  Виходячи з сучасних уявлень безпека життєдіяльності є багатогранним обєктом розуміння і сприйняття дійсності, який потребує інтеграції різних стратегій, сфер, аспектів, форм і рівнів пізнання. Складовими цієї галузі є різноманітні науки про безпеку. У всьому світі велика увага приділяється вивченню дисциплін
22828. ВИМІРЮВАННЯ НАПРУЖЕННОСТІ МАГНІТНОГО ПОЛЯ ВЗДОВЖ ОСІ СОЛЕНОЇДА ІНДУКЦІЙНАМ МЕТОДОМ 141 KB
  ВИМІРЮВАННЯ НАПРУЖЕННОСТІ МАГНІТНОГО ПОЛЯ ВЗДОВЖ ОСІ СОЛЕНОЇДА ІНДУКЦІЙНАМ МЕТОДОМ Явище електромагнітної індукції полягає у виникненні е. Напруженість магнітного поля в будьякій точці А що лежить на осі ОО’ соленоїда чисельно дорівнює алгебраїчній сумі напруженостей магнітних полів створених у точці А всіма витками спрямована вздовж осі за правилом свердлика 3 Де n’ – число витків за одиницю довжини соленоїда І величина струму; кути що утворює радіусвектор проведений з точки А до крайніх витків соленоїда мал....
22829. ЯВИЩЕ ГІСТЕРЕЗИСУ В ФЕРОМАГНЕТИКУ 115 KB
  ЯВИЩЕ ГІСТЕРЕЗИСУ В ФЕРОМАГНЕТИКУ Особливий клас магнетиків становлять феромагнетики – речовини здатні мати намагнічення у відсутності зовнішнього магнітного поля.21 наведена залежність модуля вектора намагнічення від напруженості зовнішнього поля для феромагнетика з попереднім магнітним полем рівним нулеві основна або нульова крива намагнічення . При деякому значенні H намагнічення досягає насичення оскільки вектор магнітної індукції та вектора намагнічення зв’язані співвідношенням то при досягненні вектор стає функцією від:...
22830. ВИЗНАЧЕННЯ КОНЦЕНТРАЦІЇ НОСІЇВ ЗАРЯДУ В НАПІВПРОВІДНИКАХ З ЕФЕКТУ ХОЛЛА 71.5 KB
  ВИЗНАЧЕННЯ КОНЦЕНТРАЦІЇ НОСІЇВ ЗАРЯДУ В НАПІВПРОВІДНИКАХ З ЕФЕКТУ ХОЛЛА В основу вимірювання концентрації електронів покладено явище Холла яке полягає у виникненні поперечної різниці потенціалів при проходженні струму по провіднику напівпровіднику який знаходиться в магнітному полі перпендикулярному до лінії струму. Ефект Холла в електронній теорії пояснюється так. Введемо сталу Холла 7 Тоді 8 Отже згідно з формулою 8 вимірявши силу струму I у...