67577

Коммутативные группы с конечным числом образующих. Классификация

Лекция

Математика и математический анализ

Для нулевой матрицы теорема очевидно верна. Будем считать, что А0. Выберем из множества ненулевых элементов А любой из наименьших по модулю и назовем его главным элементом А. Абсолютная величина главного элемента будет обозначаться h(A). Таким образом для любого ненулевого элемента этой матрицы.

Русский

2014-09-12

209.5 KB

0 чел.

Лекция№6

Коммутативные группы с конечным числом образующих.

Часть вторая: классификация.

Как было показано на предыдущей лекции, каждая г.к.о. G с n образующими задается  (n m) матрицей , причем эквивалентные матрицы определяют одинаковые группы. Будем называть прямоугольную матрицу А диагональной , если все ее элементы =0 при i j. Последовательно перечисляя ее диагональные элементы, будем записывать такую матрицу в виде: A=diag().

Теорема о приведении матрицы к диагональному виду.

Всякая целочисленная прямоугольная матрица А эквивалентна диагональной матрице  diag(), с положительными , причем все числа  - целые.

Доказательство.

Для нулевой матрицы теорема очевидно верна. Будем считать, что А0. Выберем из множества ненулевых элементов А любой из наименьших по модулю и назовем его главным элементом А. Абсолютная величина главного элемента будет обозначаться  h(A). Таким образом для любого  ненулевого элемента этой матрицы .

Лемма

Существует матрица эквивалентная А, все элементы которой кратны ее главному элементу.

Доказательство леммы.

Выберем среди всех матриц эквивалентных А ту матрицу , у которой h() минимально. Покажем, что эта матрица удовлетворяет условию, указанному в лемме. Проведем доказательство от противного. Пусть  - главный элемент этой матрицы  так что  . Допустим, что некоторый элемент этой матрицы не делится на  нацело и придем к противоречию. Рассмотрим 3 случая. Пусть сначала p=i, то есть выбранные элементы расположены в одной строке. Разделим на с остатком: , где . Вычитая из q-ого столбца  j-ый с коэффициентом s, придем к эквивалентной матрице , у которой h()r<h(), что противоречит выбору матрицы . Если p i, но q=j, то можно произвести аналогичное преобразование строк матрицы, что опять приведет нас к противоречию. Пусть, наконец, все элементы i-ой строки и все элементы j-ого столбца кратны  , но  не делится на главный элемент нацело. Пусть k=. Вычитая из p-ой строки  ее i-ую строку с коэффициентом (k-1) придем к эквивалентной матрице , у которой  и элемент не делится на  нацело. Имеем: h()=h(A). Строгое неравенство приводит к противоречию; если же имеет место равенство, мы получаем первый случай и снова впадаем в противоречие. Лемма доказана.

Доказательство теоремы будем проводить индукцией по n. При n=1 утверждение теоремы очевидно. Пусть теорема уже доказана для матриц с (n-1) строкой. Рассмотрим матрицу А с n строками. Выберем для нее эквивалентную матрицу , удовлетворяющую условиям леммы. Пусть . Переставляя строки и столбцы   и если надо умножая ее строку на -1, приходим к эквивалентной матрице  , у которой . Вычитая теперь из каждой строки ее первую строку с подходящим коэффициентом и проделывая аналогичные операции с ее столбцами, приходим к матрице, у которой все элементы первой строки и первого столбца равны 0 за исключением первого элемента, равного , причем все элементы этой матрицы кратны . Применяя предположение индукции к матрице , полученной вычеркиванием первой строки и первого столбца, мы и завершаем доказательство теоремы.

Пример.

(стрелками обозначены э.п. строк и столбцов)

.

Опишем теперь структуру группы G с  с.о.   , для которой =diag() , причем мы считаем, что  По построению G=, где H- подгруппа с с.о. {}. Пусть -циклическая подгруппа G.  Очевидно, ( при i>r). Каждый элемент  однозначно представляется в виде суммы:  , где 0< при i=1,2,...r и при i>r .

Определение.

Пусть G- абелева группа и - система ее подгрупп. G называется прямой суммой системы подгрупп, если каждый элемент   однозначно представляется в виде суммы , где . Это записывается следующим образом: .

Таким образом, диагональный вид матрицы  означает, что , где количество слагаемых  Z равно n-r . Очевидно, что слагаемые, отвечающие тривиальным группам (d=1) могут быть исключены из этой суммы.

Примеры.

Очевидно, что .

Отметим, что если все подгруппы  имеют конечные порядки  , то порядок  равен .

Подгруппа   состоит из элементов: , а - из элементов  . Поскольку += и +=, мы видим, что .

В развитие предыдущего примера установим, что, если числа p и q взаимно просты, то. Используем основную теорему теории делимости: существуют целые x и y, такие что 1=xp+yq . Отсюда для любого n получаем, что n=nyq+nxp и значит . Остается заметить, что эти группы имеют одинаковые порядки.    

Как было показано на предыдущей лекции, группа  описывается матрицей . Приводя эту матрицу к диагональному виду, получаем эквивалентную матрицу . Следовательно, . В качестве образующих этих циклических подгрупп можно взять, например, элементы  и .

Подводя итог всему вышесказанному, можно утверждать, что всякая г.к.о. G является прямой суммой своих циклических подгрупп ,                                        (1)

 где порядки  конечных подгрупп удовлетворяют условию: числа - целые. Разложение (1) называется первым каноническим разложением группы G.


 

А также другие работы, которые могут Вас заинтересовать

23121. Рух тіл в інерціальній та неінерціальній системах відліку. Сили інерції. Коріолісівське прискорення 202 KB
  Коріолісівське прискорення. інваріантне 0 де прискорення в ІСВ швидкість в ІСВ маса тіла рівнодійна сил взаємодії які діють на тіло. Характеризуватимемо рух початку координат НеІСВ відносно ІСВ радіусвектором а обертання НеІСВ відносно ІСВ кутовою частотою х В НеІСВ вимагають аналогічного до 0 запису закону руху тіла відносно радіусвектора : Оскільки прискорення в НеІСВ внаслідок х нерівне та величина не змінюється при переході до НеІСВ необхідно щоб сумарна сила складалась не тільки з теж...
23122. Закони руху системи матеріальних точок та твердого тіла. Тензор інерції 159.5 KB
  Закони руху системи матеріальних точок та твердого тіла.Введемо вектор повної кількості руху систем частинок: Знайдемо його зміну з часом: Для першої суми: ТобтоТаким чином якщо сума всіх зовнішніх сил рівна нулю то має місце закон збереження імпульсу. Ведемо повний момент кількості руху:Знайдемо швидкість його зміни в часі: Другий доданок повний момент зовнішніх сил .Розглянемо перший доданок врахувавши : За умов виконання має місце закон збереження моменту кількості руху.
23123. Хвилі у пружньому середовищі. Хвильове рівняння. Звукові хвилі 59.5 KB
  Хвилі у пружньому середовищі. Звукові хвилі. Розрізняють хвилі повздовжні і поперечні в залежності від того чи рухаються частинки біля своїх положень рівноваги вздовж чи поперек напрямку розповсюдження хвилі. Розглянемо хвилі типу Позн.
23124. Рух ідеальної рідини. Рівняння Бернуллі 55.5 KB
  Нагадаємо що поле швидкостей характеризує не швидкiсть окремих частинок середовища а швидкiсть у данiй точцi в даний момент часу будьякої частинки рiдини або газу що знаходиться в цiй точцi в цей момент часу. Надалi будемо розглядати такi рiдини або гази для яких тензор пружних напругє iзотропним: pij = −pδij 14.10 для вязкої рiдини газу набуде вигляду: Це є рiвняння НавєСтокса де η коефiцiєнт зсувної вязкостi коефiцiєнт обємної вязкостi. Для повного опису руху рiдини необхiдно додати ще рiвняння неперервностi та...
23125. Число Рейнольдса. Рух в’язкої рідини 44 KB
  В’язкою рідиною називають середовище в якому нарівні з нормальними напругами відмінні від нуля і дотичні напруги, що виникають внаслідок сил тертя. Коли швидкості не дуже великі, в’язка частина тензора напруг матиме такий вигляд...
23126. Основні закони термодинаміки. Формулювання другого закону термодинаміки через ентропію. Статистичне означення ентропії 88.5 KB
  Функція що звязує тиск обєм і температуру фізично однорідної системи яка перебуває в термодинамічній рівновазі називається рівнянням стану. Другий закон ТД для нерівноважних процесів: Для адіабатичного процесу ентропія системи зростає. При маємо: тобто Третій закон ТД: по мірі наближення Т до 0 К ентропія будь якої рівноважної системи перестає залежати від будьяких ТД параметрів системи.
23127. Основні закони термодинаміки. Статистичне визначення ентропії 181.5 KB
  0Начало термодинаміки . 0Начало вводить скалярну величину T для характеристики рівноважн. 1Начало термодинаміки . 1Начало вимірюється в енергетичн.
23128. Розподіл Максвела і Больцмана та їх експериментальна перевірка 82.5 KB
  Розподіл Максвела і Больцмана та їх експериментальна перевірка. Розглянемо розподіл молекул по швидкостям. Розподіл Максвела це розподіл по швидкостях не залежить від напряму швидкості то ж перейдемо до сферичної системи координат . Остаточно маємо: розподіл Максвела.
23129. Міжмолекулярна взаємодія та її прояви 92 KB
  Для газу Потенціал прямокутної ями. При стискуванні газу його густина збільшується і середня відстань між молекулами зменшується. Міжмолекулярна взаємодія неідеальність газу яскраво проявляється в процесі ДжоуляТомпсона в якому відбувається зміна температури при продавлюванні газу скрізь пористу перетинку. Для ідеального газу .