67578

Коммутативные группы с конечным числом образующих. Следствия из классификации

Лекция

Математика и математический анализ

Теорема о подгруппах группы Всякая подгруппа группы изоморфна причем . Мы знаем что подгруппа G группыимеет не более чем n образующих и потому для нее можно записать первое каноническое разложение: где mk n. Теорема о подгруппах конечной коммутативной группы.

Русский

2014-09-12

278 KB

1 чел.

Лекция№7

Коммутативные группы с конечным числом образующих.

Часть третья: следствия из классификации.

Теорема о подгруппах группы

Всякая подгруппа группы  изоморфна , причем .

Доказательство.

Мы знаем, что подгруппа G группыимеет не более чем n образующих и потому для нее можно записать первое каноническое разложение: , где (m+k) n. Поскольку все элементы  имеют бесконечный порядок, G не содержит конечных циклических подгрупп. Таким образом, k=0 и теорема доказана.

Теорема о подгруппах конечной коммутативной группы.

Для всякого числа m делящего порядок n конечной коммутативной группы G в ней найдется подгруппа H порядка m.

Доказательство.

Используем разложение G в прямую сумму циклических подгрупп :  Имеем : n=. Поскольку  m делит n, можно записать: m=, где каждое  делит . Пусть . Теперь достаточно положить: .

Замечание.

Вообще говоря, подгруппа H не единственна (в отличие от случая подгруппы циклической группы ). Например, если , где число p простое, то каждый неединичный элемент  имеет порядок p и значит входит в циклическую подгруппу порядка p.  Две такие подгруппы либо совпадают, либо пересекаются только по нейтральному элементу. Значит G содержит в точности  подгрупп порядка p.

Теорема о порядках элементов конечных коммутативных групп

Пусть G- конечная циклическая группа и - ее первое каноническое разложение, так что каждое делит . Тогда множество порядков всех элементов G совпадает с множеством всевозможных делителей числа .

Доказательство.

Поскольку все являются делителями ,  =0 и потому G=0. С другой стороны, если q делит , то  (а значит и G !) содержит элемент g  порядка q.

Следствие.

Если число m взаимно просто с порядком n конечной коммутативной группы G, то mG=G.

В самом деле, в этом случае для каждого прямого слагаемого группы G  m=.

Второе каноническое разложение 

Напомним, что если числа p и q взаимно просты, то . Поскольку любое натуральное n можно разложить в произведение простых множителей, , где все простые попарно различны, имеем:  . Используя разложение конечной абелевой группы в сумму циклических подгрупп, получаем отсюда, что всякая такая группа может быть представлена в виде суммы таких циклических подгрупп, порядки которых являются степенями простых чисел. Объединим слагаемые, относящиеся к одному простому числу p в подгруппу .

Определение.

Подгруппа  называется  p-компонентой  группы G.  Группа G, порядок которой равен степени простого числа p называется p-примарной. 

Итак, всякая конечная абелева группа G раскладывается в прямую сумму p-компонент: , где p-простое число, делящее порядок G, а всякая p-компонента, в свою очередь, в прямую сумму примарных циклических подгрупп: . Прямая сумма, стоящая в правой части этого равенства обозначается , а выражение, стоящее в показателе степени p,- типом компоненты . Порядок равен , где - количество 1 в показателе, - количество 2 и т.д. Таким образом компонента  является примарной группой. Только что построенное разложение конечной абелевой группы называется вторым каноническим разложением.

Пример.

Пусть . Поскольку 12=,   72=,        имеем: .

Замечание.

Если  - две подгруппы примарной циклической группы и st, то . Отсюда вытекает, что примарная циклическая группа не может быть разложена в прямую сумму своих подгрупп. Таким образом, второе каноническое разложение конечной абелевой группы - это представление ее в виде суммы наименьших (далее не разложимых) слагаемых. Для сравнения заметим, что первое каноническое разложение - это представление группы в виде суммы наибольших циклических слагаемых.

Теорема единственности для разложения в сумму компонент.

Компоненты  конечной коммутативной группы G определены однозначно. Точнее, пусть - разложение порядка n группы G в произведение простых чисел, . Тогда .

Доказательство.

Из разложения  мы видим, что =0. Если же (p,q)=1, то q  = . Поскольку при ji  делится на, а =1, отсюда и следует утверждение теоремы.

Теорема единственности определения типа примарной группы.

Тип примарной группы определен однозначно. Точнее, если p-компонента группы G представлена в виде прямой суммы циклических подгрупп: =,      то .

Доказательство.

Пусть G=- разложение G в сумму p-компоненты и остальных компонент. Таким образом, (ord(),p)=1 и потому =. С другой стороны, = при m>k (равно 0 в противном случае). Поэтому

ord()=. Обозначая ord()=N, получаем:

ord(G)=N. Отсюда: ord(G)/ ord(G)= откуда и следует утверждение теоремы.

Замечание.

Обращаем внимание на существенное отличие в формулировке свойства единственности в двух последних теоремах. В первой из них утверждается единственность каждой из подгрупп  , тогда как во второй подгруппы, составляющие прямые слагаемые, определены, вообще говоря, неоднозначно, но их количество и порядок каждой из них  находятся уже единственным образом.

Количество неизоморфных конечных абелевых групп данного порядка.

Обозначим через ab(n) количество попарно неизоморфных абелевых групп порядка n. Ввиду единственности разложения такой группы в сумму примарных компонент, разложению   в произведение простых отвечает равенство ab(n)=ab()ab()...ab(). Если p- любое простое число, и G-

группа порядка и типа (1,1,...1,2,2,......k) то m=1+1+...+1+2+2+...+...+k. Каждому представлению числа m в виде суммы положительных целых слагаемых (причем порядок слагаемых не играет роли) отвечает определенный тип абелевой группы порядка  . Такое представление числа m называется его разбиением и обозначается . Таким образом, поскольку тип группы определяется однозначно, ab()=.

Примеры.

Составим прежде всего следующую табличку разбиений:

m

                                              разбиения

1

1

1

2

2;1+1

2

3

3;2+1;1+1+1

3

4

4;3+1;2+2;2+1+1;1+1+1+1

5

5

5;4+1;3+2;3+1+1;2+2+1;2+1+1+1;1+1+1+1+1

7

6

6;5+1;4+2;4+1+1;3+3;3+2+1;3+1+1+1;2+2+2;2+2+1+1;2+1+1+1+1;1+1+1+1+1+1

11

ab(16)= =5. Соответствующие абелевы группы порядка 16 следующие: , , , ,. Первые канонические разложения для них имеют вид: , , , , .

ab(72)=ab(8)*ab(9)= =6. Соответствующие группы суть: , , , , , . Первые канонические разложения для них имеют вид: , , , , , .

В заключение приведем табличку количества Г(n) попарно неизоморфных групп и ab(n) абелевых групп данного порядка n.

n

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Г(n)

1

1

2

1

2

1

5

2

2

1

5

1

2

1

ab(n)

1

1

2

1

1

1

3

2

1

1

2

1

1

1

 

 


 

А также другие работы, которые могут Вас заинтересовать

36418. Физическая природа постоянных времени и времени запаздывания в моделях технологических объектов. Одноемкостные и многоемкостные объекты 12.92 KB
  Физическая природа постоянных времени и времени запаздывания в моделях технологических объектов. Физическая природа постоянных времени электрическая индукция емкость; лампочка идеальная нагрузка постоянная времени и временя запаздывания приближенно равны нулю и механическая: масса и момент инерции. Постоянная времени связана с теплоемкостью и с теплообменом. природа времени запаздывания транспортная транспортер.
36419. Приведите классификацию и поясните сущность методов технической линеаризации 38.16 KB
  На выходе звена эта составляющая отфильтровывается низко частотной линейной частью системы.3 если А→∞ z0 x0 становится линейной во всем диапазоне изменения х. Для нелинейности типа зоны нечувствительности наложение на входной сигнал хn последованности импульсов прямоугольной формы с амплитудой А=n делает для постоянной составляющей х0 нелинейную характеристику линейной на участке шириной n12 посл. Она становится линейной уже при А=а.
36420. Электропривод и его место в структуре АСУТП 12.7 KB
  способы обеспечивают контроль за текущим состоянием объекта эффективные алгоритмы управления точные математические модели объектов быстродействие современных средств обработки информации позволяет быстро рассчитать величины управляющих воздействий и выдать их на объект. В настоящее время все больше для управления ЭП используют УВМ и микропроцессоры. При этом функции управления ЭП принимают на себя ВУ АСУТП обычно это МП или микроЭВМ связанные с ЭВМ более высокого уровня. При этом схема управления ЭП содержит только усилительные узлы и...
36421. Символьные вычисления в MatLab 357.5 KB
  Исследование скорости роста символьной функции описывающей некоторые параметры модели объекта анимированная визуализация полученной характеристики. здесь f1 имя функции х имя переменной вводится как строка в апострофах по которой производится дифференцирование n порядок производной. здесь f1_new имя функции х имя переменной вводится как строка по которой производится интегрирование. Здесь f1 имя функции переменной n порядок остаточного члена x имя переменной вводится как строка в апострофах по...
36422. Математические модели геометрического проектирования 312.5 KB
  Для автоматизации процесса построения Rфункции плоского геометрического объекта в виде точечного множества с шагом h можно предложить следующий алгоритм точки принадлежащие объекту отобразить в виде красных точек: А. Тогда по свойству Rфункции имеем Значит в точке с координатами xy рисуем красную точку если Pxy=0. Пример построения поверхности 0уровня Ффункции двух прямоугольников нахождение геометрического места точек касания объектов S1 и S2 1. Тогда поверхность 0уровня Ффункции двух прямоугольников задается четырьмя...
36423. Компьютерное моделирование процессов финансового рынка 292.5 KB
  При нажатии на кнопку Запрос Request вы получите котировки для совершения сделки: Кнопки Купить Buy и Продать Sell стали активными. По правой котировке можно купить Buy а по левой котировке продать Sell. Если в течение этого промежутка времени не было принято решение о сделки то кнопки Купить Buy и Продать Sell снова станут неактивными. Это говорит о том что вы или пытаетесь выставить ордер слишком близко к текущей цене ближе чем величина спрэда по данному инструменту либо неверно выбрали тип ордера Buy Limit Buy Stop...
36424. Компьютерное моделирование физических процессов 161.5 KB
  При этом судьба каждой частицы разыгрывается с помощью случайного выбора а полученные для множества частиц результаты подвергаются статистической обработке. Метод применяется например при проектировании ядерных реакторов детекторов частиц на ускорителях и обработке получаемых результатов а также во многих других случаях скажем при исследовании распространения мутаций в среде живых организмов. Мы будем изучать естественно очень простой вариант задачи прохождение пучка тяжелых частиц через слой газа состоящего из легких...
36425. Имитационное моделирование систем в MatLab Simulink 180.5 KB
  Пример разработки имитационной модели. Построение словарной модели описательная дескриптивная вербальная модель. Сумма налоговых поступлений от предприятий за моделируемый период накапливается на бюджетных счетах и представляется интегралом: где BDt сумма поступивших в бюджет средств от начала моделирования к моменту t руб.
36426. Программирование в MatLab 140.5 KB
  Листинг 1 содержит файлпрограмму для вывода графиков функции на отрезке [22] для значений параметра . Например для вычисления суммы при различных значениях x потребуется файлфункция текст которой приведен на листинге 2. Файлфункция для вычисления суммы function s=sum10x s=0; for k=1:10 s=sx. Файлфункция negsum см.