67579

Множества с двумя алгебраическими операциями. Кольца и поля

Лекция

Математика и математический анализ

Множество с двумя алгебраическими операциями R называется кольцом если R абелева группа аддитивная группа кольца R. Элементы такого кольца R имеющие обратные относительно операции умножения называются обратимыми а их множество обозначается через...

Русский

2014-09-12

192.5 KB

0 чел.

Лекция№8

Множества с двумя алгебраическими операциями. Кольца и поля.

         Пусть на множестве R определены две алгебраические операции, которые мы будем называть сложением и умножением и обозначать соответственно + и *. Говорят, что умножение обладает свойством (правой) дистрибутивности относительно сложения, если

.                                            (1)

Аналогично определяется свойство левой дистрибутивности. Разумеется, если операция умножения коммутативна, эти свойства равнозначны. В общем случае говоря о свойстве дистрибутивности мы будем подразумевать двустороннюю дистрибутивность. Предположим, что операция+ на R имеет нейтральный элемент, обозначаемый 0.  Положив в равенстве (1)  y = z = 0, получим: x*0 = x*0 + x*0, откуда,  при наличии свойства сокращения для операции +   , получаем, что x*0 = 0. Если для элемента y имеется противоположный элемент (-y), то взяв в том же равенстве z = -y, получим: 0 = x*0 = x*y + x*(-y) и, значит,  x*(-y) = -x*y.

Определение.

Множество с двумя алгебраическими операциями R(+,*) называется кольцом, если

(R,+) - абелева группа (аддитивная группа кольца R).

Умножение в R дистрибутивно относительно сложения.

Дополнительные свойства операции умножения отмечаются с помощью соответствующих прилагательных перед словом кольцо. Так ассоциативное кольцо - это кольцо, в котором операция умножения обладает свойством ассоциативности. Аналогичный смысл имеет термин коммутативное кольцо. Наличие нейтрального элемента для операции умножения выражают термином кольцо с единицей (  этот нейтральный элемент называют единицей и обозначают  или просто e ); При этом дополнительно предполагается, что кроме свойств 1  и 2 выполнено  

0.

Элементы такого кольца R, имеющие обратные относительно операции умножения,  называются обратимыми , а их множество обозначается через . Отметим, что для ассоциативного кольца с единицей множество  является группой по умножению, называемой мультипликативной группой кольца R. Поскольку  в кольце R с единицей             x*0 = 0e , элемент 0 из R необратим. В случае ассоциативного кольца не будет обратим и такой элемент y0, для которого можно найти такое z0, что y*z = 0. Такой элемент y называется (левым) делителем нуля.

Определение.

Полем называется такое ассоциативное коммутативное кольцо с единицей k, в котором всякий ненулевой элемент обратим: .

Таким образом, по определению в поле отсутствуют делители нуля.

Примеры колец и полей.

Хорошо известными примерами полей являются, конечно, поля R,Q, и C соответственно вещественных, рациональных и комплексных чисел . Отметим, что любое поле содержит по крайней мере 2 элемента - 0 и e. Этот «минимальный» запас элементов и достаточен для образования поля: операции определяются очевидным образом ( отметим только, что e+e=0). Построенное поле из двух элементов обозначается GF(2) (по причинам, которые будут ясны в дальнейшем). Напомним также, что если p - простое число, то все вычеты по модулю p, кроме 0, обратимы относительно операции умножения. Значит, рассматривая группу  с дополнительной операцией умножения, мы получаем поле из p элементов, которое обозначается GF(p).

Множество Z целых чисел с операциями сложения и умножения дает важный пример ассоциативного коммутативного кольца с единицей. Аддитивная группа этого кольца - хорошо известная нам бесконечная циклическая группа. Мультипликативная группа  содержит всего 2 элемента 1 и -1 и потому изоморфна . Элементы, не входящие в  необратимы, хотя и не являются делителями нуля.

Пусть R - любое ассоциативное коммутативное кольцо. Множество- квадратных матриц порядка n с элементами из кольца R образует кольцо относительно операций сложения и умножения матриц. Отметим, что кольцо матриц ассоциативно, но, вообще говоря, не коммутативно. Если R содержит единицу , то матрица  Е =  diag(,,...,) ,будет единицей кольца матриц. Заметим, что для любой матрицы   имеет смысл понятие определителя det(A)  R, причем det(AB)=det(A)det(B). Если det(A) обратимый элемент кольца R, то матрица A обратима в кольце матриц: , где - присоединенная к А матрица (то есть транспонированная матрица из алгебраических дополнений). Таким образом, = - группа матриц порядка n с обратимым определителем.  В случае поля R это означает, что det(A) 0, то есть матрица невырождена. С другой стороны, в этом случае любая вырожденная матрица  будет делителем нуля. В самом деле, из det(A) = 0 следует, что столбцы А линейно зависимы: , причем не все коэффициенты нулевые. Построим ненулевую матрицу В, взяв  в качестве ее первого столбца и считая прочие элементы В нулевыми. Тогда  А*В = 0 и значит А - делитель нуля.

Пусть снова R любое ассоциативное коммутативное кольцо и x - некоторый символ. Формальная сумма вида p= , где  называется многочленом над кольцом R.  Если  , то число n называется степенью этого многочлена и обозначается deg(p). Нулевой многочлен не имеет степени. Многочлены над R можно складывать и перемножать по обычным правилам и они образуют кольцо R[x]. Если кольцо R имеет единицу е, то многочлен нулевой степени p=e будет единицей кольца R[x]. Если R не имеет делителей нуля, то deg(pq)=deg(p)+ deg(q) и потому R[x] также не имеет делителей нуля. В то же время обратимыми элементами кольца многочленов будут в точности обратимые элементы R, рассматриваемые как многочлены нулевой степени. Отметим, что эта конструкция позволяет рассматривать и многочлены от нескольких переменных: по определению, R[x,y] =R[x][y] (=R[y][x]).

Определение.

Подмножество  называется подкольцом, если оно является кольцом относительно тех же операций, которые определены в R.

Это означает, что К является подгруппой аддитивной группы R и замкнуто относительно умножения: . Отметим, что если R обладает свойством ассоциативности , коммутативности или отсутствием делителей нуля, то  и К обладает теми же свойствами. В то же время, подкольцо кольца с единицей может не иметь единицы. Например, подкольцо четных чисел 2Z Z не имеет единицы. Более того, может случиться, что и R и K имеют единицы, но они не равны друг другу. Так будет, например, для подкольца , состоящего из матриц с нулевой последней строкой и последним столбцом; =diag(1,1,...,1,0)  =diag(1,1,...,1).

Определение.

Гомоморфизмом колец  называется отображение, сохраняющее обе кольцевые операции:  и . Изоморфизм - это взаимно однозначный гомоморфизм.

Ядро гомоморфизма  - это ядро группового гомоморфизма  аддитивных групп , то есть множество всех элементов из R, которые отображаются в .

Пусть снова - некоторое подкольцо. Поскольку (К,+) - подгруппа коммутативной группы (R,+), можно образовать факторгруппу R/K, элементами которой являются смежные классы  r+K. Поскольку К*К К,  для произведения двух смежных классов имеет место включение: (r+K)*(s+K) r*s+r*K+K*s+K.

Определение.

Подкольцо К называется идеалом кольца R, если : x*K K и    K*yK.

Мы видим, что если К является идеалом в R, произведение смежных классов     (r+K)*(s+K) содержится в смежном классе r*s+K. Значит в факторгруппе R/K определена операция умножения, превращающая ее в кольцо, называемое факторкольцом кольца R по идеалу К.

Примеры.

Подкольцо nZ является идеалом  кольца Z, поскольку для любого целого m m(nZ) nZ. Факторкольцо Z/nZ - это множество вычетов по модулю n с операциями сложения и умножения. Отметим, что если число n не является простым, то Z/nZ имеет делители нуля.

Пусть IR[x] - множество всех многочленов , у которых =0. Удобно записать: I = xR[x]. Поскольку p*I =(p*x)R[x] I, мы имеем идеал кольца многочленов. Каждый смежный класс q+I содержит элемент . Значит, (q+I)*(s+I) = (+I)*(+I) =*+I.

В развитие предыдущего примера рассмотрим некоторое ассоциативное коммутативное  кольцо S. Если  любой его элемент, то множество I=x*S является идеалом кольца S, называемым главным идеалом с образующим элементом x. Этот идеал обозначается (x).  Если S кольцо с единицей и элемент x обратим, то (x)=S.

Если кольцо S является полем, то всякий ненулевой идеал I в S совпадает со всем полем. В самом деле, если , x 0, то для всякого имеем: , откуда .

Пусть I идеал кольца R. Сопоставляя каждому элементу  смежный класс r+I, получаем сюръективный гомоморфизм  . Этот гомоморфизм называется естественным гомоморфизмом кольца на факторкольцо.

Замечание.

Свойства ассоциативности, коммутативности и наличия единицы очевидно сохраняются при переходе к факторкольцу. Напротив, отсутствие в R делителей нуля еще не гарантирует их отсутствие в факторкольце (см. пример 1).

Теорема об ядре.

Ядро гомоморфизма колец является идеалом.

Доказательство.

Пусть - гомоморфизм колец, I =Ker,  - любой элемент. Тогда, (x*I) =(x)* (I) =(x)*0 =0. Значит, x*I Ker =I. Аналогично проверяется, что I*xI.

Теорема о гомоморфизме для колец.

Пусть - сюръективный гомоморфизм колец. Тогда S изоморфно факторкольцу R/Ker. Если эти изоморфные кольца отождествить, то  отождествляется с естественным гомоморфизмом кольца R на свое факторкольцо.

Доказательство этой теоремы аналогично доказательству соответствующей теоремы для групп и мы его опускаем.

Пример.

Пусть K - кольцо многочленов R[x], : KC - гомоморфизм, сопоставляющий каждому многочлену p его значение в точке i : (p) =p(i). Ядро этого гомоморфизма составляют многочлены, представимые в виде:    (+1)*q(x), где q - любой многочлен. Можно записать: Ker =(+1). По теореме о гомоморфизме .

    


 

А также другие работы, которые могут Вас заинтересовать

73821. Учет труда и его оплаты 29.23 KB
  Учет труда и его оплаты Нормативная база Федеральный закон от 24 июля 2009 г. Виды формы и системы оплаты труда Существует основная и дополнительная оплата труда. Основная оплата труда оплата начисляемая работникам за отработанное время кол-во и качество выполненных работ; оплата по сдельным расценкам тарифным ставкам окладам премии сдельщикам и повременщикам доплаты в связи с отклонениями от нормальных условий работы за работу в ночное время за сверхурочные за бригадирство оплата простоев не по вине рабочих и т. Дополнительная...
73822. Учет затрат на производство продукции (работ, услуг) 73.5 KB
  Учет затрат на производство продукции работ услуг Нормативная база. Расходы обуславливаются затратами относимыми на себестоимость продукции работ услуг и выплатами из прибыли предприятия. Затраты характеризуют в денежном выражении объем ресурсов использованных в определенных целях и трансформируются в себестоимость продукции работ услуг.
73823. Проблемы обеспечения устойчивости каналов радиоуправления 48 KB
  Кроме систем связи институт разрабатывает автоматизированные системы управления и средства радио-противодействия как в интересах народного хозяйства так и силовых структур. В современных условиях безопасность страны и её граждан зависит не только от количества и качества ВВП приходящемся на душу населения вооружений которым обладают силовые структуры но и от качества системы управления которая состоит из органов управления командиров пунктов управления технических средств связи и средств автоматизированного управления. Создание АСУ...
73826. Операции над матрицами 1.17 MB
  Элементами матрицы могут являться числа алгебраические символы или математические функции. Например матрицы используется для решения систем алгебраических и дифференциальных уравнений нахождения значений физических величин в квантовой теории шифрования сообщений в Интернете. Строки матрицы нумеруются сверху вниз а столбцы слева направо.
73827. Системы уравнений в линейной алгебре 467.5 KB
  Если это определение озвучить в терминах определителей то оно будет выглядеть примерно так: Матрица размера m×n имеет ранг r если существует хотя бы один отличный от нуля определитель rго порядка тогда как определитель любой подматрицы более высокого порядка равен нулю. Для вычисления ранга матрицы можно использовать метод элементарных преобразований строк и столбцов в точности тот самый метод который применяется для вычисления определителей. Целью элементарных преобразований является приведение матрицы к...
73828. Модель затраты- выпуск (модель В. Леонтьева) 121 KB
  Либо не весь объём производства расходуется на потребление и его достаточно для расширения производства тех видов продукции на которые имеется растущий спрос либо объём производства недостаточен для воспроизводства трудового ресурса на постоянном уровне. Свойство наличия баланса состоит как раз в том что полные объёмы всей продукции складываются только из объёмов её конечного потребления и объёмов потребления продукции в производственных процессах межотраслевых потоков. Примером такой взаимосвязи может служить например потребление с х...
73829. Комплексные числа 388 KB
  Определение комплексного числа. Первая компонента комплексного числа действительное число называется действительной частью числа это обозначается так; вторая компонента действительное число называется мнимой частью числа. Два комплексных числа и равны тогда и только тогда когда равны их действительные и мнимые части.