67580

Кольцо многочленов над полем

Лекция

Математика и математический анализ

Кольцо многочленов над полем в отличие от случая многочленов над кольцом обладает рядом специфических свойств близких к свойствам кольца целых чисел Z. Делимость многочленов. Хорошо известный для многочленов над полем R способ деления углом использует только арифметические действия...

Русский

2014-09-12

139.5 KB

5 чел.

Лекция№9

Кольцо многочленов над полем.

          Кольцо многочленов над полем (в отличие от случая многочленов над кольцом) обладает рядом специфических свойств, близких к свойствам кольца целых чисел Z .

Делимость многочленов.

Хорошо известный для многочленов над полем R способ деления «углом» использует только  арифметические действия над коэффициентами и потому применим к многочленам над любым полем k. Он дает возможность для  двух ненулевых многочленов p,sk[x] построить такие многочлены q (неполное частное) и r (остаток), что p = q*s +r , причем либо r =0, либо deg(r )< deg(s ). Если r =0 , то говорят, что s делит p (или является делителем p ) и обозначают это так: s | p. Будем называть многочлен унитарным ( или приведенным), если его старший коэффициент равен 1.

Определение.

Общим наибольшим делителем  ненулевых многочленов p и s  называется такой унитарный многочлен ОНД( p, s), что

 ОНД( p, s) | p;  ОНД( p, s) | s.

q | p, q | s  q | ОНД( p, s).

По определению,  для ненулевого многочлена р со старшим коэффициентом а  ОНД (р, 0) = ОНД (0, р) = р/а; ОНД (0, 0)=0.

Аналогично определяется ОНД любого числа многочленов.

Единственность ОНД двух многочленов непосредственно вытекает из определения. Существование его следует из следующего утверждения.

Основная теорема теории делимости (для многочленов).

        Для любых двух ненулевых многочленов p и q над полем k можно найти такие многочлены u и v над тем же полем, что ОНД(p, q)= u*p+v*q.

       Доказательство этой теоремы очень похоже на приведенное в лекции     доказательство аналогичной теоремы над Z. Все же наметим основные его шаги.

Выберем такие многочлены u и v чтобы сумма w= u*p+v*q имела возможно меньшую степень( но была ненулевой!). Можно при этом считать w унитарным многочленом. Проверим, что w  | p. Выполняя деление с остатком, получаем: p= s*w+r. Подставляя это равенство в исходное, находим:   r = p - s*w =p - s*(u*p+v*q) = (1-s*u)*p+(-s*v)q = U*p + V*q . Если при этом r 0,    то       deg(r )<deg(w), что противоречит выбору  w.  Значит,  r =0. Аналогично проверяется, что w | q.  Обозначим: W = ОНД(p , q). По определению w | W. С другой стороны, W | p, W | q W | w. Остается заметить, что оба многочлена w и W унитарные и значит W = w.

Замечание.

Используя индукцию, можно доказать, что для любого числа многочленов  ОНД  для подходящих многочленов . Более того, эта формула сохраняется даже для бесконечного множества многочленов, поскольку их ОНД в действительности является ОНД некоторого их конечного подмножества.

 

Следствие.

Всякий идеал в кольце многочленов над полем является главным.

В самом деле, пусть p - ОНД всех многочленов, входящих в идеал I. Тогда  , где . По определению идеала отсюда вытекает, что , а значит, I =(p).

II. Разложение на множители.

      Пусть k некоторое поле, p, q, s - многочлены над k. Если p=q*s, причем оба многочлена q и s имеют степень меньшую, чем p, то многочлен p называется приводимым (над полем k ). В противном случае p неприводим. Неприводимый многочлен в кольце k[x] является аналогом простого числа в кольце Z . Ясно, что каждый ненулевой многочлен p= можно разложить в произведение: p= *, где все многочлены  неприводимы над k и имеют старший коэффициент равный 1. Можно доказать, что такое разложение единственно с точностью до порядка сомножителей. Разумеется среди этих множителей могут быть одинаковые; такие множители называются кратными. Объединяя кратные множители можно то же разложение записать в виде: p= .

Примеры.

. Заметим, что многочлены первой степени по определению неприводимы над любым полем. Множитель x является кратным, остальные - простые.

Многочлен  неприводим над полем Q рациональных чисел. В самом деле, если ()=(x-a)*q, то подставляя в это равенство x=a, получаем: , что невозможно ни для какого рационального числа a. Тот же многочлен над полем R вещественных чисел приводим: , причем второй множитель имеет отрицательный дискриминант и потому далее не разложим над R . Наконец, над полем C комплексных чисел имеем: , где = - кубический корень из 1. На этом примере мы видим, что понятие приводимости существенно зависит от того над каким полем рассматривается многочлен.

Свойства неприводимых многочленов.

1 .Если p- неприводимый многочлен и d =ОНД(p, q) 1, то p | q. 

В самом деле, p = d*s и если deg(s )>0, то это противоречит неприводимости p, а если deg(s )=0, то d | qp | q.

2. Если p |  и p неприводим, то либо p |  либо p | . Действительно, в противном случае НОД(p, ) = НОД(p, ) =1 и потому по основной теореме теории делимости  ; , откуда:  и значит, ,      то есть     НОД(p, )=1 и, следовательно, deg (p )=0.

III. Корни многочленов. Производная и кратные корни.

     Пусть p =  некоторый многочлен над k и . Элемент поля k,  равный , называется значением многочлена p в точке a и обозначается p(a).  Соответствие  является гомоморфизмом  Ядро этого гомоморфизма состоит из всех многочленов, для которых p(a) = 0, то есть a является их корнем. Поскольку ядро I - идеал, содержащий (x-a) и не совпадающий с k[x] (x -a +),  а каждый идеал в k[x] - главный, то  I =(x-a).  Мы приходим таким образом к теореме Безу : элемент  будет корнем многочлена p тогда и только тогда, когда (x - a) | p.  Отсюда непосредственно вытекает, что неприводимый многочлен степени больше 1 не имеет корней.

Если  | p , то a называется корнем кратности не ниже n. Введем понятие производной многочлена p. По определению это многочлен . Имеют место обычные правила вычисления производной: ; . Отсюда следует, что  и потому наличие у  многочлена корня a кратности не ниже n влечет наличие  у его производной того же корня кратности не ниже (n-1). В частности, если p(a) = 0, но , то корень a - простой (то есть не кратный). 

Если | p, но  не делит p, то число n называется кратностью корня a . Пусть - множество всех корней многочлена p с указанными кратностями . Поскольку     при        ab              НОД(,) =1, многочлен p делится на   и потому  deg(p) . Итак, многочлен степени n имеет не более n корней с учетом их кратности.   


 

А также другие работы, которые могут Вас заинтересовать

32639. Технико-экономическое обоснование проекта: содержание, назначение 27 KB
  Техникоэкономическое обоснование проекта: содержание назначение ТЭО Основным документом обосновывающим целесообразность и эффективность проекта является ТЭО проекта. Эти задачи решаются с помощью ТЭО. ТЭО является обязательным документом в случае если финансирование капитальных вложений в основные фонды осуществляется полностью или на долевых началах из Государственного бюджета Российской Федерации и ее внебюджетных фондов централизованных фондов министерств и ведомств а также собственных финансовых ресурсов государственных предприятий....
32640. Бизнес- план инвестиционного проекта: содержание, назначение 51 KB
  Бизнес план инвестиционного проекта: содержание назначение Бизнес план Бизнесплан это подробный четко структурированный и тщательно подготовленный документ описывающий цели и задачи которые необходимо решить предприятию компании способы достижения поставленных целей и техникоэкономические показатели предприятия и или проекта в результате их достижения. Содержание бизнесплана Вводная часть резюме проекта Вводная часть как правило пишется уже после того как составлен весь план. в ней содержатся основные положения всего...
32641. Принципы и процессы планирования проекта. Уровни планирования 62.5 KB
  Принципы и процессы планирования проекта. Принципы и процессы планирования Сущность планирования состоит в задании целей и способов их достижения на основе формирования комплекса работ мероприятий действий которые должны быть выполнены применении методов и средств реализации этих работ увязки ресурсов необходимых для их выполнения согласовании действий организаций участников проекта. Основная цель планирования состоит в построении модели реализации проекта. Она необходима для координации деятельности участников проекта с ее помощью...
32642. Формирование статей затрат проекта. Калькуляция расходов, сметы, бюджет проекта 27.5 KB
  Формирование статей затрат проекта. Калькуляция расходов сметы бюджет проекта. Бюджет проекта предназначен для планирования расхода средств проекта по временным периодам год квартал месяц в течение всего времени его осуществления. Обычно расход средств проекта первого года планируется более подробно показывается поквартальное и помесячное распределение денежных средств.
32643. Управление качеством в проекте 40 KB
  Управление качеством в проекте. Управление качеством Одной из ключевых функций управления проектом наряду с такими как управление стоимостью и временем является управление качеством проекта. Качество это целостная совокупность характеристик объекта относящихся к его способности удовлетворять установленные или предполагаемые потребности. Понятие качество следует отличать от понятия градация сорт класс.
32644. Проектные риски и их основные виды 39.5 KB
  Вероятность рисков это вероятность того что в результате принятия решения произойдут потери для предприятия то есть вероятность нежелательного исхода. Проектные риски это совокупность рисков угрожающих реализации инвестиционного проекта или способных снизить его эффективность коммерческую экономическую бюджетную социальную и т. Виды инвестиционных рисков многообразны. В отдельных источниках также выделяют такие риски как: риск связанный с отраслью производства вложение в производство товаров народ ного потребления в среднем...
32645. Методы анализа и прогнозирования риска и неопределенности в проекте 274.5 KB
  Анализ рисков процедуры выявления факторов рисков и оценки их значимости по сути анализ вероятности того что произойдут определенные нежелательные события и отрицательно повлияют на достижение целей проекта. Анализ рисков включает оценку рисков и методы снижения рисков или уменьшения связанных с ним неблагоприятных последствий. Назначение анализа рисков дать потенциальным партнерам необходимые данные для принятия ре шений о целесообразности участия в проекте и выработки мер по защите от воз можных финансовых потерь. Анализ рисков можно...