67580

Кольцо многочленов над полем

Лекция

Математика и математический анализ

Кольцо многочленов над полем в отличие от случая многочленов над кольцом обладает рядом специфических свойств близких к свойствам кольца целых чисел Z. Делимость многочленов. Хорошо известный для многочленов над полем R способ деления углом использует только арифметические действия...

Русский

2014-09-12

139.5 KB

5 чел.

Лекция№9

Кольцо многочленов над полем.

          Кольцо многочленов над полем (в отличие от случая многочленов над кольцом) обладает рядом специфических свойств, близких к свойствам кольца целых чисел Z .

Делимость многочленов.

Хорошо известный для многочленов над полем R способ деления «углом» использует только  арифметические действия над коэффициентами и потому применим к многочленам над любым полем k. Он дает возможность для  двух ненулевых многочленов p,sk[x] построить такие многочлены q (неполное частное) и r (остаток), что p = q*s +r , причем либо r =0, либо deg(r )< deg(s ). Если r =0 , то говорят, что s делит p (или является делителем p ) и обозначают это так: s | p. Будем называть многочлен унитарным ( или приведенным), если его старший коэффициент равен 1.

Определение.

Общим наибольшим делителем  ненулевых многочленов p и s  называется такой унитарный многочлен ОНД( p, s), что

 ОНД( p, s) | p;  ОНД( p, s) | s.

q | p, q | s  q | ОНД( p, s).

По определению,  для ненулевого многочлена р со старшим коэффициентом а  ОНД (р, 0) = ОНД (0, р) = р/а; ОНД (0, 0)=0.

Аналогично определяется ОНД любого числа многочленов.

Единственность ОНД двух многочленов непосредственно вытекает из определения. Существование его следует из следующего утверждения.

Основная теорема теории делимости (для многочленов).

        Для любых двух ненулевых многочленов p и q над полем k можно найти такие многочлены u и v над тем же полем, что ОНД(p, q)= u*p+v*q.

       Доказательство этой теоремы очень похоже на приведенное в лекции     доказательство аналогичной теоремы над Z. Все же наметим основные его шаги.

Выберем такие многочлены u и v чтобы сумма w= u*p+v*q имела возможно меньшую степень( но была ненулевой!). Можно при этом считать w унитарным многочленом. Проверим, что w  | p. Выполняя деление с остатком, получаем: p= s*w+r. Подставляя это равенство в исходное, находим:   r = p - s*w =p - s*(u*p+v*q) = (1-s*u)*p+(-s*v)q = U*p + V*q . Если при этом r 0,    то       deg(r )<deg(w), что противоречит выбору  w.  Значит,  r =0. Аналогично проверяется, что w | q.  Обозначим: W = ОНД(p , q). По определению w | W. С другой стороны, W | p, W | q W | w. Остается заметить, что оба многочлена w и W унитарные и значит W = w.

Замечание.

Используя индукцию, можно доказать, что для любого числа многочленов  ОНД  для подходящих многочленов . Более того, эта формула сохраняется даже для бесконечного множества многочленов, поскольку их ОНД в действительности является ОНД некоторого их конечного подмножества.

 

Следствие.

Всякий идеал в кольце многочленов над полем является главным.

В самом деле, пусть p - ОНД всех многочленов, входящих в идеал I. Тогда  , где . По определению идеала отсюда вытекает, что , а значит, I =(p).

II. Разложение на множители.

      Пусть k некоторое поле, p, q, s - многочлены над k. Если p=q*s, причем оба многочлена q и s имеют степень меньшую, чем p, то многочлен p называется приводимым (над полем k ). В противном случае p неприводим. Неприводимый многочлен в кольце k[x] является аналогом простого числа в кольце Z . Ясно, что каждый ненулевой многочлен p= можно разложить в произведение: p= *, где все многочлены  неприводимы над k и имеют старший коэффициент равный 1. Можно доказать, что такое разложение единственно с точностью до порядка сомножителей. Разумеется среди этих множителей могут быть одинаковые; такие множители называются кратными. Объединяя кратные множители можно то же разложение записать в виде: p= .

Примеры.

. Заметим, что многочлены первой степени по определению неприводимы над любым полем. Множитель x является кратным, остальные - простые.

Многочлен  неприводим над полем Q рациональных чисел. В самом деле, если ()=(x-a)*q, то подставляя в это равенство x=a, получаем: , что невозможно ни для какого рационального числа a. Тот же многочлен над полем R вещественных чисел приводим: , причем второй множитель имеет отрицательный дискриминант и потому далее не разложим над R . Наконец, над полем C комплексных чисел имеем: , где = - кубический корень из 1. На этом примере мы видим, что понятие приводимости существенно зависит от того над каким полем рассматривается многочлен.

Свойства неприводимых многочленов.

1 .Если p- неприводимый многочлен и d =ОНД(p, q) 1, то p | q. 

В самом деле, p = d*s и если deg(s )>0, то это противоречит неприводимости p, а если deg(s )=0, то d | qp | q.

2. Если p |  и p неприводим, то либо p |  либо p | . Действительно, в противном случае НОД(p, ) = НОД(p, ) =1 и потому по основной теореме теории делимости  ; , откуда:  и значит, ,      то есть     НОД(p, )=1 и, следовательно, deg (p )=0.

III. Корни многочленов. Производная и кратные корни.

     Пусть p =  некоторый многочлен над k и . Элемент поля k,  равный , называется значением многочлена p в точке a и обозначается p(a).  Соответствие  является гомоморфизмом  Ядро этого гомоморфизма состоит из всех многочленов, для которых p(a) = 0, то есть a является их корнем. Поскольку ядро I - идеал, содержащий (x-a) и не совпадающий с k[x] (x -a +),  а каждый идеал в k[x] - главный, то  I =(x-a).  Мы приходим таким образом к теореме Безу : элемент  будет корнем многочлена p тогда и только тогда, когда (x - a) | p.  Отсюда непосредственно вытекает, что неприводимый многочлен степени больше 1 не имеет корней.

Если  | p , то a называется корнем кратности не ниже n. Введем понятие производной многочлена p. По определению это многочлен . Имеют место обычные правила вычисления производной: ; . Отсюда следует, что  и потому наличие у  многочлена корня a кратности не ниже n влечет наличие  у его производной того же корня кратности не ниже (n-1). В частности, если p(a) = 0, но , то корень a - простой (то есть не кратный). 

Если | p, но  не делит p, то число n называется кратностью корня a . Пусть - множество всех корней многочлена p с указанными кратностями . Поскольку     при        ab              НОД(,) =1, многочлен p делится на   и потому  deg(p) . Итак, многочлен степени n имеет не более n корней с учетом их кратности.   


 

А также другие работы, которые могут Вас заинтересовать

86013. Организация системы бухгалтерского учета и пути ее совершенствования в страховых организациях (на примере ОАО «РОСГОССТРАХ») 114.68 KB
  В бухгалтерии страховой организации аккумулируется вся информация о фактах хозяйственной деятельности, происходит их документальное подтверждение и фиксирование, начиная с создания страховой услуги, привлечения в этих целях необходимых средств, калькулирования фактических издержек до формирования годовой бухгалтерской отчетности.
86014. Организация и технология документационного обеспечения управления 43.35 KB
  Перспективы развития правил оформления управленческих документов предложена дополнительная информация об основных положениях и составлении инструкции по делопроизводству и должностных инструкций сотрудников. Деятельность учреждения фиксируется в разных видах документов. Все эти виды составляют группу организационных документов. Инструкция по делопроизводству является нормативным документом регламентирующим организацию правила приемы и процессы создания документов порядок работы с ними осуществление контроля за их исполнением.
86015. Организация и управление связей с общественностью в клубной сфере 683.5 KB
  Особо следует отметить, что рынок развлечении до сих пор характеризуется устойчивой тенденцией к росту и является наиболее динамичным среди регионов Восточной Европы. «Сегодня в Москве работает около 450-500 заведений клубного сегмента, а объем столичного рынка ночных клубов растет...
86016. Бизнес-план фирмы ООО «Инфо-Нью(Info-New)» 161.13 KB
  Важнейшей задачей разработки бизнес-планов является проблема привлечения и обоснования инвестиций и кредитов в том числе зарубежных необходимых для осуществления проектов технического перевооружения и реконструкции предприятий.
86017. Определение сметной стоимости строительства 90.72 KB
  Сметная стоимость является основой для определения размера капитальных вложений финансирования строительства формирования договорных цен на строительную продукцию расчетов за выполненные подрядные строительно-монтажные ремонтно-строительные работы оплаты расходов по приобретению оборудования...
86018. Норма права и правоотношение 316.21 KB
  Актуальность проблемы анализа взаимосвязи правовой нормы и правоотношения как раз и связана с введением в юридическую практику общепризнанных оценок выступающих не только мерой но и ориентиром в общественном развитии с позиции эффективности правового регулирования общественных отношений...
86020. Эффективность производства и реализации производства льнопродукции 686 KB
  Теоритические основы эффективности производства и реализации льнопродукции Понятие сущность и показатели эффективности производства Основные показатели характеризующие эффективность производства льнопродукции Основные направления повышения производства и реализации льнопродукции...
86021. ОТБОР В ФУТБОЛЬНЫХ КЛУБАХ ПЕРВОЙ И ПРЕМЬЕР ЛИГИ 878 KB
  Проблема спортивного отбора является одной из основных проблем физической культуры и спорта. Развитие теории спортивного отбора влияет на уровень спортивных достижений и на развитие спортивной науки в целом.