67580

Кольцо многочленов над полем

Лекция

Математика и математический анализ

Кольцо многочленов над полем в отличие от случая многочленов над кольцом обладает рядом специфических свойств близких к свойствам кольца целых чисел Z. Делимость многочленов. Хорошо известный для многочленов над полем R способ деления углом использует только арифметические действия...

Русский

2014-09-12

139.5 KB

5 чел.

Лекция№9

Кольцо многочленов над полем.

          Кольцо многочленов над полем (в отличие от случая многочленов над кольцом) обладает рядом специфических свойств, близких к свойствам кольца целых чисел Z .

Делимость многочленов.

Хорошо известный для многочленов над полем R способ деления «углом» использует только  арифметические действия над коэффициентами и потому применим к многочленам над любым полем k. Он дает возможность для  двух ненулевых многочленов p,sk[x] построить такие многочлены q (неполное частное) и r (остаток), что p = q*s +r , причем либо r =0, либо deg(r )< deg(s ). Если r =0 , то говорят, что s делит p (или является делителем p ) и обозначают это так: s | p. Будем называть многочлен унитарным ( или приведенным), если его старший коэффициент равен 1.

Определение.

Общим наибольшим делителем  ненулевых многочленов p и s  называется такой унитарный многочлен ОНД( p, s), что

 ОНД( p, s) | p;  ОНД( p, s) | s.

q | p, q | s  q | ОНД( p, s).

По определению,  для ненулевого многочлена р со старшим коэффициентом а  ОНД (р, 0) = ОНД (0, р) = р/а; ОНД (0, 0)=0.

Аналогично определяется ОНД любого числа многочленов.

Единственность ОНД двух многочленов непосредственно вытекает из определения. Существование его следует из следующего утверждения.

Основная теорема теории делимости (для многочленов).

        Для любых двух ненулевых многочленов p и q над полем k можно найти такие многочлены u и v над тем же полем, что ОНД(p, q)= u*p+v*q.

       Доказательство этой теоремы очень похоже на приведенное в лекции     доказательство аналогичной теоремы над Z. Все же наметим основные его шаги.

Выберем такие многочлены u и v чтобы сумма w= u*p+v*q имела возможно меньшую степень( но была ненулевой!). Можно при этом считать w унитарным многочленом. Проверим, что w  | p. Выполняя деление с остатком, получаем: p= s*w+r. Подставляя это равенство в исходное, находим:   r = p - s*w =p - s*(u*p+v*q) = (1-s*u)*p+(-s*v)q = U*p + V*q . Если при этом r 0,    то       deg(r )<deg(w), что противоречит выбору  w.  Значит,  r =0. Аналогично проверяется, что w | q.  Обозначим: W = ОНД(p , q). По определению w | W. С другой стороны, W | p, W | q W | w. Остается заметить, что оба многочлена w и W унитарные и значит W = w.

Замечание.

Используя индукцию, можно доказать, что для любого числа многочленов  ОНД  для подходящих многочленов . Более того, эта формула сохраняется даже для бесконечного множества многочленов, поскольку их ОНД в действительности является ОНД некоторого их конечного подмножества.

 

Следствие.

Всякий идеал в кольце многочленов над полем является главным.

В самом деле, пусть p - ОНД всех многочленов, входящих в идеал I. Тогда  , где . По определению идеала отсюда вытекает, что , а значит, I =(p).

II. Разложение на множители.

      Пусть k некоторое поле, p, q, s - многочлены над k. Если p=q*s, причем оба многочлена q и s имеют степень меньшую, чем p, то многочлен p называется приводимым (над полем k ). В противном случае p неприводим. Неприводимый многочлен в кольце k[x] является аналогом простого числа в кольце Z . Ясно, что каждый ненулевой многочлен p= можно разложить в произведение: p= *, где все многочлены  неприводимы над k и имеют старший коэффициент равный 1. Можно доказать, что такое разложение единственно с точностью до порядка сомножителей. Разумеется среди этих множителей могут быть одинаковые; такие множители называются кратными. Объединяя кратные множители можно то же разложение записать в виде: p= .

Примеры.

. Заметим, что многочлены первой степени по определению неприводимы над любым полем. Множитель x является кратным, остальные - простые.

Многочлен  неприводим над полем Q рациональных чисел. В самом деле, если ()=(x-a)*q, то подставляя в это равенство x=a, получаем: , что невозможно ни для какого рационального числа a. Тот же многочлен над полем R вещественных чисел приводим: , причем второй множитель имеет отрицательный дискриминант и потому далее не разложим над R . Наконец, над полем C комплексных чисел имеем: , где = - кубический корень из 1. На этом примере мы видим, что понятие приводимости существенно зависит от того над каким полем рассматривается многочлен.

Свойства неприводимых многочленов.

1 .Если p- неприводимый многочлен и d =ОНД(p, q) 1, то p | q. 

В самом деле, p = d*s и если deg(s )>0, то это противоречит неприводимости p, а если deg(s )=0, то d | qp | q.

2. Если p |  и p неприводим, то либо p |  либо p | . Действительно, в противном случае НОД(p, ) = НОД(p, ) =1 и потому по основной теореме теории делимости  ; , откуда:  и значит, ,      то есть     НОД(p, )=1 и, следовательно, deg (p )=0.

III. Корни многочленов. Производная и кратные корни.

     Пусть p =  некоторый многочлен над k и . Элемент поля k,  равный , называется значением многочлена p в точке a и обозначается p(a).  Соответствие  является гомоморфизмом  Ядро этого гомоморфизма состоит из всех многочленов, для которых p(a) = 0, то есть a является их корнем. Поскольку ядро I - идеал, содержащий (x-a) и не совпадающий с k[x] (x -a +),  а каждый идеал в k[x] - главный, то  I =(x-a).  Мы приходим таким образом к теореме Безу : элемент  будет корнем многочлена p тогда и только тогда, когда (x - a) | p.  Отсюда непосредственно вытекает, что неприводимый многочлен степени больше 1 не имеет корней.

Если  | p , то a называется корнем кратности не ниже n. Введем понятие производной многочлена p. По определению это многочлен . Имеют место обычные правила вычисления производной: ; . Отсюда следует, что  и потому наличие у  многочлена корня a кратности не ниже n влечет наличие  у его производной того же корня кратности не ниже (n-1). В частности, если p(a) = 0, но , то корень a - простой (то есть не кратный). 

Если | p, но  не делит p, то число n называется кратностью корня a . Пусть - множество всех корней многочлена p с указанными кратностями . Поскольку     при        ab              НОД(,) =1, многочлен p делится на   и потому  deg(p) . Итак, многочлен степени n имеет не более n корней с учетом их кратности.   


 

А также другие работы, которые могут Вас заинтересовать

71350. Понятие о военной и экстремальной медицине 421 KB
  Военная медицина стала оформляться в самостоятельную область знаний с появлением постоянных армий. В России это конец XVIIначало XVIII веков когда возникла необходимость иметь в составе регулярной армии военно-медицинскую службу ВМС предназначенную для медицинского обеспечения войск.
71351. КУРС ЛЕКЦЫЙ “БІБЛІЯТЭКАЗНАЎСТВА. ГІСТОРЫЯ” 1.24 MB
  “Бібліятэказнаўства: Гісторыя” раскрывае сусветную гісторыю бібліятэчнай справы, вывучае патрэбнасці грамадства ў бібліятэцы, яе ролю ў вытворчым і культурным жыцці. Вывучэнне сусветнай гісторыі бібліятэчнай справы як састаўной часткі сусветнай культуры неабходна для разумення...
71352. Возникновение государства у восточных славян (VIII-IX века) 931 KB
  В течение веков город оставался крупным торговым политическим и военным центром на северо-западе России. Опричнина ухудшила экономическое и политическое положение России установила в ней режим страха и насилия укрепила личную власть Ивана Грозного.
71353. ПРЕДМЕТ И МЕТОДЫ ИСТОРИИ ЗЕМЕЛЬНО-ИМУЩЕСТВЕННЫХ ОТНОШЕНИЙ И ЗЕМЛЕУСТРОЙСТВА 588.5 KB
  Развитие любого общества немыслимо без использования земли. Земля выступает в качестве средства производства во всех отраслях и сферах деятельности людей. Роль земли в отдельных отраслях производства неодинакова.
71357. Основи системного адміністрування ОС FreeBSD Unix 1.55 MB
  Завдання на роботу Відповідно до варіанту: створити облікові записи груп користувачів; створити облікові записи користувачів; додати облікові записи користувачів в необхідні групи, символ «+» означає приналежність користувача групі; створити каталоги і встановити необхідні права доступу...
71358. Установка і початкове налаштування ОС FreeBSD Unix 8.71 MB
  Контрольні питання Визначте основні можливості операційної системи FreeBSD Unix. Які функції виконує менеджер завантаження FreeBSD? Вкажіть особливості виділення дискового простору для FreeBSD Unix. Яким чином ядро системи іменує IDE диски?