67582

Характеристика поля; автоморфизм Фробениуса

Лекция

Математика и математический анализ

Любое тождество A = B, где A и B целые алгебраические выражения (то есть построенные из переменных с использованием только операций сложения, вычитания и умножения) с целыми коэффициентами может быть перенесено в любое поле k, путем замены каждого целого z Z на соответствующий элемент...

Русский

2014-09-12

132.5 KB

3 чел.

Лекция№11

Характеристика поля; автоморфизм Фробениуса.

          Пусть k - произвольное поле,  его единица. Рассмотрим отображение , действующее по формуле t(n) = ne. Это отображение является гомоморфизмом колец. Пусть I Z его ядро. Возможны два случая:

I ={0}. В этом случае говорят, что характеристика поля k равна 0. Поскольку тогда при n 0 элементы ne обратимы, t можно продолжить до инъективного отображения T: Q k, положив: T(n/m) = ne* . Значит k содержит подполе Im T .

I{0}. Тогда I = pZ и k содержит Im T в качестве подкольца. В этом случае говорят, что характеристика поля k равна p. Заметим, что число p обязательно простое, так как в противном случае Z/pZ содержит делители нуля.

Итак, если char(k) =0, то k содержит подполе, изоморфное полю рациональных чисел Q, а если char(k) =p, то k содержит подполе, изоморфное конечному полю GF(p).

Примеры.

Поля Q, R, C - очевидно имеют характеристику 0.

Поле, содержащее конечное число элементов, очевидно имеет положительную характеристику. Рассмотрим следующий пример. Пусть множество X содержит 4 элемента: 0, 1, a, b, которые складываются и перемножаются в соответствие со следующими таблицами:                                                           Нетрудно проверить, что относительно введенных операций X является полем, причем 0 - нейтральный элемент для операции сложения, а 1 - нейтральный элемент для умножения. Поскольку  2*x = x + x = 0, поле X имеет характеристику 2. Отметим, что (X,+) , а . Поскольку поле X содержит 4 элемента, в наших обозначениях это - GF(4).

Приведем пример бесконечного поля положительной характеристики. Пусть k - произвольное поле. Построим новое поле k(x) - поле рациональных функций над k. По определению, элементами этого поля, то есть рациональными функциями, являются отношения многочленов ( то есть дроби) r = p/q, где p,q k[x], причем q 0. Считается, что , если. Отсюда следует, что  : (dp)/(dq) = p/q так что дроби можно приводить к общему знаменателю, что дает возможность их складывать: p/q + u/v = (pv)/(qv) + (qu)/(qv) =(pv+qu)/qv. Умножение дробей определяется естественным образом: (p/q)*(u/v) = (pu)/(qv). Отметим, что k[x] k(x) - каждый многочлен p отождествляется с дробью p/1. Ясно, что эта конструкция действительно дает поле. Если в качестве k взять конечное поле GF(q) характеристики p, то мы придем к бесконечному полю GF(q)(x), которое также имеет характеристику p.

Продолжение алгебраических тождеств в произвольные поля.

Любое тождество A = B, где A и B целые алгебраические выражения ( то есть построенные из переменных с использованием только операций сложения, вычитания и умножения ) с целыми коэффициентами может быть перенесено в любое поле k, путем замены каждого целого z  Z на соответствующий элемент t(z)  k (см. начало лекции). В случае поля характеристики 0 такое перенесение возможно и для выражений с рациональными коэффициентами, так как t продолжается до отображения Q в k. Например, формула Тейлора для многочленов:  имеет смысл в любом поле характеристики 0, но в поле положительной характеристики некоторые из факториалов, стоящих в знаменателе, могут обратиться в 0 и в таком виде формула не имеет смысла. Однако, если переписать ее в виде:

она будет иметь смысл и в поле характеристики q, если каждое целое число s, входящее в нее, заменить на остаток   от деления на q.

Формула бинома Ньютона:  имеет смысл в любом поле, поскольку биномиальные коэффициенты  - целые числа.

Лемма.

Если p простое число, то p | при s=1,2,...,p-1.

Действительно, = - целое число, так что каждый множитель знаменателя сокращается с некоторым множителем числителя. Так как s < p и p - простое, ОНД( p, s!) = 1 и потому в этом сокращении не участвует p, так что k =   Z и значит =pk при s > 0.

Следствие.

В поле k характеристики p имеет место формула: . В самом деле, все промежуточные слагаемые в формуле бинома входят с нулевыми коэффициентами: =0.

Гомоморфизм Фробениуса.

Пусть k - поле характеристики p. Рассмотрим отображение , действующее по формуле: Ф(a) = . Только что мы проверили, что Ф(a+b) = Ф(a)+Ф(b). Кроме того, очевидно, что Ф(ab) = Ф(a(b). Это означает, что Ф - гомоморфизм поля k в себя. Поскольку  = 0 a = 0, Ф инъективен. Если поле k конечно отсюда следует, что Ф взаимно однозначно, то есть является изоморфизмом поля k с самим собой (автоморфизмом) . Ф называется автоморфизмом Фробениуса. Если k = GF(p), то поскольку   - циклическая группа порядка ( p-1), для всякого  , то есть Ф(а) = а. Возвращаясь к случаю произвольного поля k характеристики p заметим, что так как уравнение  в поле k имеет не более p корней, этими корнями будут в точности все элементы , так что для элементов  и не входящих в GF(p),  Ф(а) а. Например, для рассмотренного выше поля GF(4) характеристики 2 (см. пример 2), имеем:

Ф(0) = 0 ; Ф(1) = 1 ; Ф(а) = b ; Ф(b) = а.

Если q любой многочлен над полем GF(p), k - некоторое поле характеристики p и  , тоФ()) = Ф() , а потому, если  - корень q, то Ф() также является его корнем, причем отличным от исходного, если . (Отметим очевидную аналогию с комплексным корнем многочлена с вещественными коэффициентами; здесь роль автоморфизма Ф играет комплексное сопряжение).

Пример.

Пусть q =   - многочлен над полем GF(2),  =а. Используя таблицы примера 3, легко проверить, что . Значит, Ф() =  = b также будет корнем этого многочлена, причем не совпадающим с a. Это можно проверить «в лоб» или использовать формулы Виета:

a + b = 1 и ab = 1.

Замечание.

В случае бесконечного поля положительной характеристики гомоморфизм Ф может не быть сюръективным. Например, для поля GF(p)(x), построенного в примере 3, гомоморфизм Ф, очевидно, действует по формуле: Ф(r(x)) = r() и потому элемент r = x не входит в его образ.

 

 


 

А также другие работы, которые могут Вас заинтересовать

4398. Общее равновесие и благосостояние в экономике 124 KB
  Частичное и общее равновесие в экономике. Частные и общественные блага. Линия возможных благосостояний. Парето-оптимальность и Парето-предпочтительность. Дифференциация доходов и проблема неравенства. Кривая Лоренца. Коэффициен...
4399. Понятие конвертируемости валюты (денежной единицы) страны 198.5 KB
  Введение Понятие конвертируемости валюты (денежной единицы) страны имеет в современной экономической теории размытые рамки, которые формально классифицированы, в частности, Международным валютным фондом создавшим за послевоенную историю нормативные ...
4400. Деньги и их характеристики. Инструменты кредитно-денежного регулирования 172.5 KB
  Деньгами в обширном смысле могут быть названы всякие знаки ценности, служащие для размена, приобретения других предметов, покупки или найма человеческого труда. Деньги - это общественный институт, который увеличивает богатство, снижая издер...
4401. Космологические модели вселенной 87.5 KB
  Космологические модели вселенной ЧТО ТАКОЕ КОСМОЛОГИЯ? Современная космология - это астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной. Космология основывается на ас...
4402. Вивчення впливу зовнішнього оточення організації на її діяльність 111 KB
  Вступ Не існує жодної організації, що не мала б зовнішнього оточення і не знаходилася б з ним у стані постійної взаємодії. Успіх будь-якої організації залежить не тільки від факторів діючих всередині організації, але, вирішальним чином, залежи...
4403. Розрахунки чеками та векселями 51.5 KB
  Чек — грошовий документ встановленої форми, що містить беззаперечне письмове розпорядження власника рахунка (клієнта) банкові, який обслуговує його, сплатити певну суму грошей пред'явникові чека або іншій вказаній у чеку особі
4404. Агропомышленный комплекс Новосибирской области 92.5 KB
  Введение Новосибирская область: государственно-территориальное образование, входящее в состав Российской Федерации на правах ее равноправного субъекта, расположена в географическом центре страны, в юго-восточной части Западно-Сибирской равнины, глав...
4405. Фанализ - филосовско-аналитическая теория истины 152 KB
  Эта работа была задумана для рассмотрения более объективной оценки окружающего мира. Здесь рассматриваются более двадцати вопросов, наиболее значимых, при объяснении такого подхода поиска истины как Фанализ. Этот взгляд должен дать толчок для самора...
4406. Разработка тягового и топливно-экономического расчета автомобиля 1.09 MB
  В курсе теории автомобиля тяговый и топливно-экономический расчет является одним из важнейших разделов. Этот расчет позволяет по некоторым заданным параметрам определить остальные конструктивные и эксплуатационные параметры...