67582

Характеристика поля; автоморфизм Фробениуса

Лекция

Математика и математический анализ

Любое тождество A = B, где A и B целые алгебраические выражения (то есть построенные из переменных с использованием только операций сложения, вычитания и умножения) с целыми коэффициентами может быть перенесено в любое поле k, путем замены каждого целого z Z на соответствующий элемент...

Русский

2014-09-12

132.5 KB

5 чел.

Лекция№11

Характеристика поля; автоморфизм Фробениуса.

          Пусть k - произвольное поле,  его единица. Рассмотрим отображение , действующее по формуле t(n) = ne. Это отображение является гомоморфизмом колец. Пусть I Z его ядро. Возможны два случая:

I ={0}. В этом случае говорят, что характеристика поля k равна 0. Поскольку тогда при n 0 элементы ne обратимы, t можно продолжить до инъективного отображения T: Q k, положив: T(n/m) = ne* . Значит k содержит подполе Im T .

I{0}. Тогда I = pZ и k содержит Im T в качестве подкольца. В этом случае говорят, что характеристика поля k равна p. Заметим, что число p обязательно простое, так как в противном случае Z/pZ содержит делители нуля.

Итак, если char(k) =0, то k содержит подполе, изоморфное полю рациональных чисел Q, а если char(k) =p, то k содержит подполе, изоморфное конечному полю GF(p).

Примеры.

Поля Q, R, C - очевидно имеют характеристику 0.

Поле, содержащее конечное число элементов, очевидно имеет положительную характеристику. Рассмотрим следующий пример. Пусть множество X содержит 4 элемента: 0, 1, a, b, которые складываются и перемножаются в соответствие со следующими таблицами:                                                           Нетрудно проверить, что относительно введенных операций X является полем, причем 0 - нейтральный элемент для операции сложения, а 1 - нейтральный элемент для умножения. Поскольку  2*x = x + x = 0, поле X имеет характеристику 2. Отметим, что (X,+) , а . Поскольку поле X содержит 4 элемента, в наших обозначениях это - GF(4).

Приведем пример бесконечного поля положительной характеристики. Пусть k - произвольное поле. Построим новое поле k(x) - поле рациональных функций над k. По определению, элементами этого поля, то есть рациональными функциями, являются отношения многочленов ( то есть дроби) r = p/q, где p,q k[x], причем q 0. Считается, что , если. Отсюда следует, что  : (dp)/(dq) = p/q так что дроби можно приводить к общему знаменателю, что дает возможность их складывать: p/q + u/v = (pv)/(qv) + (qu)/(qv) =(pv+qu)/qv. Умножение дробей определяется естественным образом: (p/q)*(u/v) = (pu)/(qv). Отметим, что k[x] k(x) - каждый многочлен p отождествляется с дробью p/1. Ясно, что эта конструкция действительно дает поле. Если в качестве k взять конечное поле GF(q) характеристики p, то мы придем к бесконечному полю GF(q)(x), которое также имеет характеристику p.

Продолжение алгебраических тождеств в произвольные поля.

Любое тождество A = B, где A и B целые алгебраические выражения ( то есть построенные из переменных с использованием только операций сложения, вычитания и умножения ) с целыми коэффициентами может быть перенесено в любое поле k, путем замены каждого целого z  Z на соответствующий элемент t(z)  k (см. начало лекции). В случае поля характеристики 0 такое перенесение возможно и для выражений с рациональными коэффициентами, так как t продолжается до отображения Q в k. Например, формула Тейлора для многочленов:  имеет смысл в любом поле характеристики 0, но в поле положительной характеристики некоторые из факториалов, стоящих в знаменателе, могут обратиться в 0 и в таком виде формула не имеет смысла. Однако, если переписать ее в виде:

она будет иметь смысл и в поле характеристики q, если каждое целое число s, входящее в нее, заменить на остаток   от деления на q.

Формула бинома Ньютона:  имеет смысл в любом поле, поскольку биномиальные коэффициенты  - целые числа.

Лемма.

Если p простое число, то p | при s=1,2,...,p-1.

Действительно, = - целое число, так что каждый множитель знаменателя сокращается с некоторым множителем числителя. Так как s < p и p - простое, ОНД( p, s!) = 1 и потому в этом сокращении не участвует p, так что k =   Z и значит =pk при s > 0.

Следствие.

В поле k характеристики p имеет место формула: . В самом деле, все промежуточные слагаемые в формуле бинома входят с нулевыми коэффициентами: =0.

Гомоморфизм Фробениуса.

Пусть k - поле характеристики p. Рассмотрим отображение , действующее по формуле: Ф(a) = . Только что мы проверили, что Ф(a+b) = Ф(a)+Ф(b). Кроме того, очевидно, что Ф(ab) = Ф(a(b). Это означает, что Ф - гомоморфизм поля k в себя. Поскольку  = 0 a = 0, Ф инъективен. Если поле k конечно отсюда следует, что Ф взаимно однозначно, то есть является изоморфизмом поля k с самим собой (автоморфизмом) . Ф называется автоморфизмом Фробениуса. Если k = GF(p), то поскольку   - циклическая группа порядка ( p-1), для всякого  , то есть Ф(а) = а. Возвращаясь к случаю произвольного поля k характеристики p заметим, что так как уравнение  в поле k имеет не более p корней, этими корнями будут в точности все элементы , так что для элементов  и не входящих в GF(p),  Ф(а) а. Например, для рассмотренного выше поля GF(4) характеристики 2 (см. пример 2), имеем:

Ф(0) = 0 ; Ф(1) = 1 ; Ф(а) = b ; Ф(b) = а.

Если q любой многочлен над полем GF(p), k - некоторое поле характеристики p и  , тоФ()) = Ф() , а потому, если  - корень q, то Ф() также является его корнем, причем отличным от исходного, если . (Отметим очевидную аналогию с комплексным корнем многочлена с вещественными коэффициентами; здесь роль автоморфизма Ф играет комплексное сопряжение).

Пример.

Пусть q =   - многочлен над полем GF(2),  =а. Используя таблицы примера 3, легко проверить, что . Значит, Ф() =  = b также будет корнем этого многочлена, причем не совпадающим с a. Это можно проверить «в лоб» или использовать формулы Виета:

a + b = 1 и ab = 1.

Замечание.

В случае бесконечного поля положительной характеристики гомоморфизм Ф может не быть сюръективным. Например, для поля GF(p)(x), построенного в примере 3, гомоморфизм Ф, очевидно, действует по формуле: Ф(r(x)) = r() и потому элемент r = x не входит в его образ.

 

 


 

А также другие работы, которые могут Вас заинтересовать

8897. Банківський менеджмент. Управління банківськими ризиками 151.78 KB
  Банківський менеджмент 1. Основи менеджменту в банку 2. Функції та елементи фінансового менеджменту в банку 3. Методи управління активами та пасивами банку 4. Управління банківськими ризиками 1. Основи менеджменту в банку Розглядаючи суть поняття б...
8898. Операції банків із залучення коштів 53.66 KB
  Операції банків із залучення коштів Поняття залучених банківських ресурсів. Характеристика депозитних операцій комерційних банків. Договірне регулювання вкладних операцій. Фонд гарантування вкладів фізичних осіб. 4.1. Поняття...
8899. Операції банків із запозичення коштів 55.23 KB
  Операції банків із запозичення коштів Поняття та класифікація запозичених ресурсів банківських установ. Суть та значення міжбанківського кредитування при формуванні запозичених ресурсів. Види, порядок надання та погашення кредитів...
8900. Операції банків з обслуговування платіжного обороту 103.13 KB
  Операції банків з обслуговування платіжного обороту Загальна характеристика платіжного обороту. Поняття системи безготівкових розрахунків та способи їхньої організації. Правила документообігу при здійсненні банками безготівкових ро...
8901. Характеристика основних форм безготівкових розрахунків 175.17 KB
  Характеристика основних форм безготівкових розрахунків. Розрахунки із застосуванням платіжних доручень. Розрахунки із застосуванням платіжних вимог-доручень. Розрахунки платіжними вимогами. Розрахунки із застосуванням розраху...
8902. Порядок здійснення міжбанківських розрахунків 151.32 KB
  Порядок здійснення міжбанківських розрахунків. Необхідність, сутність і класифікація міжбанківських розрахунків. Система електронних платежів Національного банку України. Відкриття та закриття кореспондентських рахунків банків...
8903. Операції банків з готівкою 82.6 KB
  Операції банків з готівкою Завдання банків з організації готівкового грошового обігу. Вимоги до організації готівкових розрахунків. Порядок оформлення касових операцій. Порядок здійснення касових операцій у банківських устано...
8904. Операції банків з готівкою. Емісійно-касова діяльність Національного банку України 136.46 KB
  Операції банків з готівкою Операції банків з готівкою для своїх клієнтів. Порядок прогнозування касових оборотів. Емісійно-касова діяльність Національного банку України. 1. Операції банків з готівкою для своїх клієнтів Готівкові оп...
8905. Операції банків з платіжними картками 198.07 KB
  Операції банків з платіжними картками Сутність та основні види платіжних карток Емісія, еквайринг та операції із застосуванням платіжних карток Розрахунки з використанням платіжних карток Національна система масових електронн...