67584

Расширения полей. Формальное присоединение элементов

Лекция

Математика и математический анализ

На прошлой лекции было показано что исходное поле k можно расширить добавляя элементы из некоторого большего поля. Оказывается что конструкцию присоединения можно провести изнутри не выходя в большее поле K. Пусть pk(x)неприводимый многочлен над k U его корень в некотором большем поле...

Русский

2014-09-12

288 KB

3 чел.

Лекция 13

Расширения полей.

Формальное присоединение элементов.

            На прошлой лекции было показано, что исходное поле k можно расширить добавляя элементы из некоторого большего поля. В случае простого алгебраического расширения добавляется единственный элемент U, являющийся корнем некоторого неприводимого многочлена над k степени n. Это приводит к полю k(U), которое будет расширением степени n исходного поля k.

            Оказывается, что конструкцию присоединения можно провести “изнутри”, не выходя в большее поле K. Идея этого построения раскрывается в следующей теореме.

Теорема.

Пусть pk[x] - неприводимый многочлен над k, U - его корень в некотором большем поле K, (p) =pk[x] k[x] - главный идеал с образующим элементом p. Тогда k(U)  k[x]/(p).

Доказательство.

Определим отображение :k[x]  k(U)  формулой (q)=q(U). Поскольку каждый элемент Vk(U) может быть записан в виде многочлена от U,  сюръективно. По теореме о гомоморфизме k(U)  k[x]/Ker. Остается доказать, что Ker = (p). Если q=pd, то q(U)=p(U)d(U) = 0 и таким образом (p)  Ker. Обратно, если q(U) = 0 то поскольку p неприводим и p(U) = 0 , p | q и значит Ker  (p).

Следствие.        

Если  и  корни одного неприводимого над k многочлена, то поля k() и k() изоморфны, причем при этом изоморфизме каждый элемент поля k отображается на себя.

Замечание.

Поле F = k[x]/(p), для своего построения не требует знания большего поля K, в котором лежит корень  неприводимого многочлена p. Поле F содержит k. Рассмотрим естественный гомоморфизм t: k[x]  F и определим элемент U поля F равенством U= t(x). Тогда, очевидно, p(U) =0 . Теперь только что доказанная теорема позволяет утверждать, что Fk(U). Такой способ присоединения новых элементов к полю  называется формальным. Отметим, что именно так было построено поле C комплексных чисел исходя из поля вещественных чисел R: мнимую единицу i мы присоединили, как корень (неприводимого над R) многочлена . Присоединение было формальным в вышеуказанном смысле, так как находясь в области вещественных чисел, мы не можем указать корень этого многочлена.

Примеры.

Пусть k = Q, U =. Тогда p= имеет корни U, U, U, где - кубический корень из 1. Согласно только что сформулированному следствию, поля k=k(U) и k=k(U) изоморфны, хотя они и состоят из элементов различной природы: все числа из поля k действительные, а для k это уже не так.

Рассмотрим k = GF(2) и неприводимый многочлен p= +x+1 над этим полем. Нам неизвестно никакое большее поле K, в котором следует искать корни этого многочлена. В соответствии с только что доказанной теоремой рассмотрим поле K=k[x]/(p). Всякий его элемент можно записать в виде a+bU, где a , bGF(2), причем +U+1 = 0 . Поле K поэтому содержит 4 элемента: 0 = 0+0U; 1=1+0U; U =0+1U; V = 1+1U. Поле K является расширением поля GF(2) и потому имеет характеристику 2. С учетом этого обстоятельства его элементы складываются очевидным образом. Что касается умножения, то (как и во всяком поле) (a+bU)(c+dU) = ac+(ad+bc)U+bdи остается воспользоваться равенством =U+1. Например, U(U+1) = +U =1 так что элементы U и U+1 взаимно обратны. Поле K обозначается GF(4). В нем многочлен p имеет корень U.  Другим корнем p в том же поле будет V = U+1. Значит в поле GF(4) многочлен p раскладывается на множители первой степени: p = (x+U)(x+U+1).

Поле разложения многочлена.

Пусть pk[x] произвольный многочлен степени n. Разложим его в произведение неприводимых многочленов: p =. Присоединяя к k корень многочлена p построим новое поле, в котором p = (x-a) , где многочлены неприводимы над. Теперь присоединим к корень многочлена и так далее. В результате не более чем через n шагов мы придем к полю K в котором многочлен p распадается, то есть раскладывается в произведение многочленов первой степени: p=

Определение.

Построенное таким образом поле K называется полем разложения многочлена p. Это - наименьшее поле, содержащее k и все корни многочлена p: K = k().

Примеры.

У нас уже появлялись поля разложения. Так мы видели,что Q() -поле разложения многочлена Q[x], Q() - поле разложения многочлена Q[x], GF(4) - поле разложенияGF(2)[x].

Построим поле разложения для p = Q[x]. Заметим, что поле=Q() таковым не является; в этом поле p = и второй множитель q  неприводим даже над R, поскольку его дискриминант меньше нуля. Поле разложения K получится, если мы присоединим к полю один из корней уравнения q(x) = 0, то есть величину, где - кубический корень из 1. Впрочем, поскольку, достаточно присоединить. Первое расширение имеет базис 1, ,. Второе - 1, . По теореме о строении составного расширения,  базис K над Q составляют элементы: 1, ,,,, и [K:Q] =6. Заметим, что  = K, хотя в отдельности ни i ни не входят в K.

Замечание.

Можно доказать ( мы этого делать не будем), что поле разложения данного многочлена определено однозначно с точностью до изоморфизма.

Строение конечных полей.

Теорема о количестве элементов конечного поля.      

Пусть K расширение конечного поля k степени n. Если k содержит q элементов, то K содержит  элементов.

Доказательство.

Пусть - базис расширения. Любой элемент поля K однозначно записывается в виде:, гдеk. Отсюда и вытекает наше утверждение.

Следствие.

Количество элементов конечного поля k  характеристики p равно. В самом деле, kGF(p).

Как нам известно, над полем GF(p) существуют неприводимые многочлены любой степени . Присоединяя ( формально) к GF(p) корень такого многочлена степени n, мы получим расширение KGF(p) степени n. Итак, имеем следующее утверждение.

Теорема существования для конечных полей   

Для всякого натурального n и простого p существует конечное поле из  элементов.

        Рассмотрим теперь многочлен t =, где q =  над полем GF(p). Пусть K какое либо поле, содержащее все корни этого многочлена, так что в K . Отметим, что среди элементов нет одинаковых. В самом деле,  , так что ОНД(t, ) = 1 и t не имеет кратных корней.

Теорема.   

Множество T = {}K является полем из q элементов.

Доказательство.                                                                                                                                                  Надо проверить, что и                                            1. , Но . Значит, 

2. .

Следствие.

Поле T   из элементов является полем разложения многочлена  над GF(p).

Поскольку поле разложения многочлена определено однозначно с точностью до изоморфизма, мы вправе ввести для него специальное обозначение. Это поле называется полем Галуа  в честь французского математика Эвариста Галуа и обозначается GF().

Пусть теперь K любое поле из  элементов. Как нам известно, группа K* - циклическая порядка q-1. Поэтому для любого, а потому  для всех без исключения элементов K. Таким образом всякий элемент xK удовлетворяет уравнению =0  и KGF(q). Поскольку они состоят из одинакового числа элементов, мы получаем:

Теорема.

Любое конечное поле изоморфно GF().

Следствие.

Всякий неприводимый над GF(p) многочлен s степени n является делителем многочлена d =.

В самом деле, присоединяя к GF(p) корень многочлена s, мы получаем поле из элементов. Следовательно, этот корень содержится в GF() и неприводимый многочлен s делит d.

Отметим, что после этого присоединения получается поле разложения многочлена s.

Следствие.

Поле разложения любого неприводимого многочлена s степени n над GF(p) получается в результате присоединения одного единственного корня этого многочлена и изоморфно GF().  Многочлен s не имеет корней в полях GF() при l<n.

Теорема о подполях конечных полей.

Если kGF(), то kGF(),  причем m | n. Обратно, для всякого делителя m числа n в поле GF() существует единственное подполе из  элементов.

Доказательство.

Поскольку k имеет характеристику p оно состоит из q =  элементов. Поле GF() можно рассматривать как расширение степени l поля  k и, следовательно оно состоит из элементов, так что n = ml. Обратно, поскольку kGF(), всякий его элемент удовлетворяет уравнению = x. Это уравнение имеет не более корней в поле GF(), и значит если такое  подполе существует, его элементы определяются однозначно. Остается доказать, что при n = ml уравнение  = x имеет ровно корней в GF(). Проверим, что. Обозначим и заметим, что число целое. Имеем: .Так как y =1 корень числителя, то деление выполняется нацело. Поскольку в поле GF() многочлен распадается, то же верно и для его делителя и потому этот многочлен имеет корней.

Теорема о действии автоморфизма Фробениуса.   

Автоморфизм Фробениуса Ф:  циклически переставляет корни любого неприводимого многочлена степени n над GF(p).

Доказательство.

Пусть s заданный многочлен и a один из его корней. Тогда Ф Достаточно проверить, что все элементы a, Ф(a), ...., Ф попарно различны. Допустим, что Ф(a)= Ф(a), то есть, где i<j<n. Обозначим v = i- j+n. Возводя обе части полученного равенства в степень, получаем: . Таким образом a содержится в поле разложения многочлена, то есть в GF(). Поскольку v<n это невозможно.   


 

А также другие работы, которые могут Вас заинтересовать

20952. Захист від несанкціонованого доступу в операційній системі Windows 366.5 KB
  Завдання: Вивчити настроювання Брандмауера Windows .Центру забезпечення безпеки Windows. Брандмауер Windows Меню Пуск – Панель керування – Брандмауер Windows Рис.
20953. Керування правами користувачів в операційній системі Windows 243 KB
  Домен або глобальні користувачі й групи управляються мережним адміністратором. Операційна система містить кілька вбудованих облікових записів користувачів і груп які не можуть бути вилучені Групи Адміністратори Користувачі що входять у групу Адміністратори мають повний доступ на керування комп'ютером. Оператори архіву Члени групи Оператори архіву можуть архівувати й відновлювати файли на комп'ютері незалежно від усіх дозволів якими захищені ці файли. Досвідчені користувачі Члени групи досвідчених користувачів можуть створювати...
20954. Основні ознаки присутності на комп'ютері шкідливих програм 571.5 KB
  Вивчення настроювань браузера Рис. Значення цього поля збігається з тим адресою яка була автоматично заданий при відкритті браузера Рис. C її допомогою можна в режимі реального часу відслідковувати запущені процеси що виконуються додатки й оцінювати завантаженість системних ресурсів комп'ютера й використання мережі Рис.
20955. Профілактика проникнення шкідливого програмного забезпечення. Реєстр Windows 186.5 KB
  Реєстр Windows Ціль: практичне освоєння студентами науковотеоретичних положень дисципліни з питань захисту інформації від впливу шкідливого програмного забезпечення на основі використання методів і засобів профілактики вірусних атак а також оволодіння ними технікою експериментальних досліджень і аналізу отриманих результатів прищеплювання навичок роботи з обчислювальною технікою. Профілактика проникнення шкідливого програмного забезпечення за допомогою дослідження Реєстру ОС Windows XP Реєстр операційної системи Windows це більша база...
20956. Установка та попереднє настроювання Антивірусу Касперського 949 KB
  Завдання: Вивчити системні вимоги антивірусу й зрівняти їх з параметрами комп'ютера установити й настроїти Антивірус Касперського. Бувають також вимоги до апаратного забезпечення у цьому випадку постулируется необхідність наявності на комп'ютері деякого мінімального обсягу оперативної пам'яті якщо її менше те програма буде дуже повільно працювати або ж не запуститься зовсім вільного простору на диску для розміщення всіх необхідних у роботі додатка файлів тактової частоти процесора від якої залежить продуктивність комп'ютера й інше....
20957. Робота Антивірусу Касперського 593 KB
  Вивчення інтерфейсу У цім завданні вивчається інтерфейс Антивірусу Касперського. У ньому також розташовані посилання на інші вікна  Вікна настроювань призначеного для настроювання завдань і компонентів  Вікна статистики й звітів у якому можна одержати дані про результати роботи антивірусу  Вікна довідкової системи У ході виконання завдання потрібно буде по черзі викликати всі чотири вікна інтерфейсу Антивірусу Касперського й ознайомитися з їхнім зовнішнім виглядом. Після успішного завершення процесу установки Антивірусу Касперського в...
20959. Національно-культурне піднесення 1920-1930-х рр.. Українська культура в період тоталітаризму 1.42 MB
  Початок 1920-х років було для української культури позбавленим світлих перспектив. Розділ Україні між сусідніми державами гальмував національну інтеграцію, в тому числі і в сфері культури. Культурний потенціал Україні був підірваний руйнівними наслідками громадянської війни, часткової окупацією країни. Військове лихоліття не тільки знищило духовні і матеріальні цінності, а й основного творця культурних цінностей - інтелігенцію.
20960. ПАРОЛЬНИЙ ЗАХИСТ 101 KB
  Текст програми include iostream include fstream include conio.h include string include iomanip include windows.h using namespace std; string decrypt string str { for unsigned int i=0; i str.size; i if str[i]=' ' str[i]=charabsshortstr[i]255; return str; } string encrypt string str { for unsigned int i=0; i str.