67584

Расширения полей. Формальное присоединение элементов

Лекция

Математика и математический анализ

На прошлой лекции было показано что исходное поле k можно расширить добавляя элементы из некоторого большего поля. Оказывается что конструкцию присоединения можно провести изнутри не выходя в большее поле K. Пусть pk(x)неприводимый многочлен над k U его корень в некотором большем поле...

Русский

2014-09-12

288 KB

3 чел.

Лекция 13

Расширения полей.

Формальное присоединение элементов.

            На прошлой лекции было показано, что исходное поле k можно расширить добавляя элементы из некоторого большего поля. В случае простого алгебраического расширения добавляется единственный элемент U, являющийся корнем некоторого неприводимого многочлена над k степени n. Это приводит к полю k(U), которое будет расширением степени n исходного поля k.

            Оказывается, что конструкцию присоединения можно провести “изнутри”, не выходя в большее поле K. Идея этого построения раскрывается в следующей теореме.

Теорема.

Пусть pk[x] - неприводимый многочлен над k, U - его корень в некотором большем поле K, (p) =pk[x] k[x] - главный идеал с образующим элементом p. Тогда k(U)  k[x]/(p).

Доказательство.

Определим отображение :k[x]  k(U)  формулой (q)=q(U). Поскольку каждый элемент Vk(U) может быть записан в виде многочлена от U,  сюръективно. По теореме о гомоморфизме k(U)  k[x]/Ker. Остается доказать, что Ker = (p). Если q=pd, то q(U)=p(U)d(U) = 0 и таким образом (p)  Ker. Обратно, если q(U) = 0 то поскольку p неприводим и p(U) = 0 , p | q и значит Ker  (p).

Следствие.        

Если  и  корни одного неприводимого над k многочлена, то поля k() и k() изоморфны, причем при этом изоморфизме каждый элемент поля k отображается на себя.

Замечание.

Поле F = k[x]/(p), для своего построения не требует знания большего поля K, в котором лежит корень  неприводимого многочлена p. Поле F содержит k. Рассмотрим естественный гомоморфизм t: k[x]  F и определим элемент U поля F равенством U= t(x). Тогда, очевидно, p(U) =0 . Теперь только что доказанная теорема позволяет утверждать, что Fk(U). Такой способ присоединения новых элементов к полю  называется формальным. Отметим, что именно так было построено поле C комплексных чисел исходя из поля вещественных чисел R: мнимую единицу i мы присоединили, как корень (неприводимого над R) многочлена . Присоединение было формальным в вышеуказанном смысле, так как находясь в области вещественных чисел, мы не можем указать корень этого многочлена.

Примеры.

Пусть k = Q, U =. Тогда p= имеет корни U, U, U, где - кубический корень из 1. Согласно только что сформулированному следствию, поля k=k(U) и k=k(U) изоморфны, хотя они и состоят из элементов различной природы: все числа из поля k действительные, а для k это уже не так.

Рассмотрим k = GF(2) и неприводимый многочлен p= +x+1 над этим полем. Нам неизвестно никакое большее поле K, в котором следует искать корни этого многочлена. В соответствии с только что доказанной теоремой рассмотрим поле K=k[x]/(p). Всякий его элемент можно записать в виде a+bU, где a , bGF(2), причем +U+1 = 0 . Поле K поэтому содержит 4 элемента: 0 = 0+0U; 1=1+0U; U =0+1U; V = 1+1U. Поле K является расширением поля GF(2) и потому имеет характеристику 2. С учетом этого обстоятельства его элементы складываются очевидным образом. Что касается умножения, то (как и во всяком поле) (a+bU)(c+dU) = ac+(ad+bc)U+bdи остается воспользоваться равенством =U+1. Например, U(U+1) = +U =1 так что элементы U и U+1 взаимно обратны. Поле K обозначается GF(4). В нем многочлен p имеет корень U.  Другим корнем p в том же поле будет V = U+1. Значит в поле GF(4) многочлен p раскладывается на множители первой степени: p = (x+U)(x+U+1).

Поле разложения многочлена.

Пусть pk[x] произвольный многочлен степени n. Разложим его в произведение неприводимых многочленов: p =. Присоединяя к k корень многочлена p построим новое поле, в котором p = (x-a) , где многочлены неприводимы над. Теперь присоединим к корень многочлена и так далее. В результате не более чем через n шагов мы придем к полю K в котором многочлен p распадается, то есть раскладывается в произведение многочленов первой степени: p=

Определение.

Построенное таким образом поле K называется полем разложения многочлена p. Это - наименьшее поле, содержащее k и все корни многочлена p: K = k().

Примеры.

У нас уже появлялись поля разложения. Так мы видели,что Q() -поле разложения многочлена Q[x], Q() - поле разложения многочлена Q[x], GF(4) - поле разложенияGF(2)[x].

Построим поле разложения для p = Q[x]. Заметим, что поле=Q() таковым не является; в этом поле p = и второй множитель q  неприводим даже над R, поскольку его дискриминант меньше нуля. Поле разложения K получится, если мы присоединим к полю один из корней уравнения q(x) = 0, то есть величину, где - кубический корень из 1. Впрочем, поскольку, достаточно присоединить. Первое расширение имеет базис 1, ,. Второе - 1, . По теореме о строении составного расширения,  базис K над Q составляют элементы: 1, ,,,, и [K:Q] =6. Заметим, что  = K, хотя в отдельности ни i ни не входят в K.

Замечание.

Можно доказать ( мы этого делать не будем), что поле разложения данного многочлена определено однозначно с точностью до изоморфизма.

Строение конечных полей.

Теорема о количестве элементов конечного поля.      

Пусть K расширение конечного поля k степени n. Если k содержит q элементов, то K содержит  элементов.

Доказательство.

Пусть - базис расширения. Любой элемент поля K однозначно записывается в виде:, гдеk. Отсюда и вытекает наше утверждение.

Следствие.

Количество элементов конечного поля k  характеристики p равно. В самом деле, kGF(p).

Как нам известно, над полем GF(p) существуют неприводимые многочлены любой степени . Присоединяя ( формально) к GF(p) корень такого многочлена степени n, мы получим расширение KGF(p) степени n. Итак, имеем следующее утверждение.

Теорема существования для конечных полей   

Для всякого натурального n и простого p существует конечное поле из  элементов.

        Рассмотрим теперь многочлен t =, где q =  над полем GF(p). Пусть K какое либо поле, содержащее все корни этого многочлена, так что в K . Отметим, что среди элементов нет одинаковых. В самом деле,  , так что ОНД(t, ) = 1 и t не имеет кратных корней.

Теорема.   

Множество T = {}K является полем из q элементов.

Доказательство.                                                                                                                                                  Надо проверить, что и                                            1. , Но . Значит, 

2. .

Следствие.

Поле T   из элементов является полем разложения многочлена  над GF(p).

Поскольку поле разложения многочлена определено однозначно с точностью до изоморфизма, мы вправе ввести для него специальное обозначение. Это поле называется полем Галуа  в честь французского математика Эвариста Галуа и обозначается GF().

Пусть теперь K любое поле из  элементов. Как нам известно, группа K* - циклическая порядка q-1. Поэтому для любого, а потому  для всех без исключения элементов K. Таким образом всякий элемент xK удовлетворяет уравнению =0  и KGF(q). Поскольку они состоят из одинакового числа элементов, мы получаем:

Теорема.

Любое конечное поле изоморфно GF().

Следствие.

Всякий неприводимый над GF(p) многочлен s степени n является делителем многочлена d =.

В самом деле, присоединяя к GF(p) корень многочлена s, мы получаем поле из элементов. Следовательно, этот корень содержится в GF() и неприводимый многочлен s делит d.

Отметим, что после этого присоединения получается поле разложения многочлена s.

Следствие.

Поле разложения любого неприводимого многочлена s степени n над GF(p) получается в результате присоединения одного единственного корня этого многочлена и изоморфно GF().  Многочлен s не имеет корней в полях GF() при l<n.

Теорема о подполях конечных полей.

Если kGF(), то kGF(),  причем m | n. Обратно, для всякого делителя m числа n в поле GF() существует единственное подполе из  элементов.

Доказательство.

Поскольку k имеет характеристику p оно состоит из q =  элементов. Поле GF() можно рассматривать как расширение степени l поля  k и, следовательно оно состоит из элементов, так что n = ml. Обратно, поскольку kGF(), всякий его элемент удовлетворяет уравнению = x. Это уравнение имеет не более корней в поле GF(), и значит если такое  подполе существует, его элементы определяются однозначно. Остается доказать, что при n = ml уравнение  = x имеет ровно корней в GF(). Проверим, что. Обозначим и заметим, что число целое. Имеем: .Так как y =1 корень числителя, то деление выполняется нацело. Поскольку в поле GF() многочлен распадается, то же верно и для его делителя и потому этот многочлен имеет корней.

Теорема о действии автоморфизма Фробениуса.   

Автоморфизм Фробениуса Ф:  циклически переставляет корни любого неприводимого многочлена степени n над GF(p).

Доказательство.

Пусть s заданный многочлен и a один из его корней. Тогда Ф Достаточно проверить, что все элементы a, Ф(a), ...., Ф попарно различны. Допустим, что Ф(a)= Ф(a), то есть, где i<j<n. Обозначим v = i- j+n. Возводя обе части полученного равенства в степень, получаем: . Таким образом a содержится в поле разложения многочлена, то есть в GF(). Поскольку v<n это невозможно.   


 

А также другие работы, которые могут Вас заинтересовать

74403. Строение и развитие (мегаспорогенез) зародышевого мешка 30.5 KB
  Там они делятся позднее еще два раза и на концах зародышевого мешка получается по четыре ядра. По одному ядру от каждой группы так называемые полярные ядра направляется к середине зародышевого мешка где они сливаются и образуют так называемое вторичное или центральное ядро зародышевого мешка. Вокруг трех ядер находящихся в конце зародышевого мешка ближайшем к пыльцевходу скопляется густая протоплазма и получаются три клетки голые или одетые очень тонкой белковой но не целлюлозной оболочкой.
74404. КОНУС НАРАСТАНИЯ СТЕБЛЯ 32.5 KB
  Теория справедливая для споровых растений мхов плаунов хвощей и папоротников см. 83 оказалась неверной для голосеменных и покрытосеменных растений. Ганштейн показал что у этих растений единственной апикальной клетки нет конус нарастания их побега массивный многоклеточный и слоистый. По теории гистогенов сформулированной Ганштейном конус нарастания голосеменных и цветковых растений состоит из трех слоев клеток: 1 наружного однослойного дерматогена1 из него возникает кожица эпидермис;2 периблемы состоящей из одного или...
74405. Ксилема 40 KB
  По характеру утолщения стенок различают трахеиды кольчатые спиральные лестничные сетчатые и пористые рис. Пористые трахерды имеют всегда окаймленные поры рис. 101 у хвойных обычно с торусом рис. Трахеиды приспособлены к выполнению двух функций: проведения воды и механического укрепления органа.
74406. Вторичная ксилема 67.5 KB
  Многолетняя деятельность камбия приводит к коренным изменениям в строении древесины и луба. Вторичная ксилема или вторичная древесина Строение древесины хвойных. В трахеидах поздней древесины образованной камбием в конце лета и осенью радиальный размер значительно меньше тангентального; оболочка сильно утолщена а клеточный просвет мал. Трахеиды ранней древесины в соответствии с их строением являются преимущественно элементами проводящей системы; поздние же трахеиды по строению принадлежащие к типу волокнистых трахеид функционируют в...
74407. Вторичная флоэма, или вторичный луб 44.5 KB
  Продольная лубяная паренхима образуется в виде цепочек тяжей лубяной паренхимы или в виде длинных не поделившихся поперечными перегородками клеток камбиформ аналогичных клеткам древесинной паренхимы. Оболочки клеток паренхимы луба обычно одревесневают позже и слабее чем в древесине. Паренхима располагается в лубе в виде тангентальных прослоек у липы радиальными рядами у бузины группами из нескольких клеток у сосен. В паренхиме скопляются запасы в виде крахмала а также в виде гемицеллюлоз откладывающихся в оболочках клеток.
74408. Вторичное утолщение корней 30 KB
  В результате образуется замкнутое камбиальное кольцо с лопастным и только в диархных корнях овальным очертанием на поперечных срезах. У многих многолетних растений деятельность камбия в корнях так же как и в стеблях периодична и часто можно видеть кольца прироста рис. У древесных пород относящихся к двудольным гистологическое различие между древесиной корня и ствола выражено еще более резко: в корнях трахеи и трахеиды более многочисленны и более тесно расположены более тонкостенны а обычно и более широкопросветны1 снабжены более...
74409. Гинецей 59.5 KB
  У некоторых растений столбик не развит рыльце находится непосредственно на завязи и называется сидячим. Так как семяпочки заключены внутри завязи то на них не могут непосредственно как у голосеменных переноситься пылинки.
74410. Половое размножение голосеменных растений 48.5 KB
  Покров вырастает из основания нуцеллуса так называемой халацы обрастает нуцеллус постепенно снизу вверх но на вершине не смыкается оставляя отверстие так называемый пыльцевход или семявход илимикропиле. Из получающихся четырех клеток одна сильно разрастается вытесняя три остальные и большую часть нуцеллуса; это и будет мегаспора...