67584

Расширения полей. Формальное присоединение элементов

Лекция

Математика и математический анализ

На прошлой лекции было показано что исходное поле k можно расширить добавляя элементы из некоторого большего поля. Оказывается что конструкцию присоединения можно провести изнутри не выходя в большее поле K. Пусть pk(x)неприводимый многочлен над k U его корень в некотором большем поле...

Русский

2014-09-12

288 KB

3 чел.

Лекция 13

Расширения полей.

Формальное присоединение элементов.

            На прошлой лекции было показано, что исходное поле k можно расширить добавляя элементы из некоторого большего поля. В случае простого алгебраического расширения добавляется единственный элемент U, являющийся корнем некоторого неприводимого многочлена над k степени n. Это приводит к полю k(U), которое будет расширением степени n исходного поля k.

            Оказывается, что конструкцию присоединения можно провести “изнутри”, не выходя в большее поле K. Идея этого построения раскрывается в следующей теореме.

Теорема.

Пусть pk[x] - неприводимый многочлен над k, U - его корень в некотором большем поле K, (p) =pk[x] k[x] - главный идеал с образующим элементом p. Тогда k(U)  k[x]/(p).

Доказательство.

Определим отображение :k[x]  k(U)  формулой (q)=q(U). Поскольку каждый элемент Vk(U) может быть записан в виде многочлена от U,  сюръективно. По теореме о гомоморфизме k(U)  k[x]/Ker. Остается доказать, что Ker = (p). Если q=pd, то q(U)=p(U)d(U) = 0 и таким образом (p)  Ker. Обратно, если q(U) = 0 то поскольку p неприводим и p(U) = 0 , p | q и значит Ker  (p).

Следствие.        

Если  и  корни одного неприводимого над k многочлена, то поля k() и k() изоморфны, причем при этом изоморфизме каждый элемент поля k отображается на себя.

Замечание.

Поле F = k[x]/(p), для своего построения не требует знания большего поля K, в котором лежит корень  неприводимого многочлена p. Поле F содержит k. Рассмотрим естественный гомоморфизм t: k[x]  F и определим элемент U поля F равенством U= t(x). Тогда, очевидно, p(U) =0 . Теперь только что доказанная теорема позволяет утверждать, что Fk(U). Такой способ присоединения новых элементов к полю  называется формальным. Отметим, что именно так было построено поле C комплексных чисел исходя из поля вещественных чисел R: мнимую единицу i мы присоединили, как корень (неприводимого над R) многочлена . Присоединение было формальным в вышеуказанном смысле, так как находясь в области вещественных чисел, мы не можем указать корень этого многочлена.

Примеры.

Пусть k = Q, U =. Тогда p= имеет корни U, U, U, где - кубический корень из 1. Согласно только что сформулированному следствию, поля k=k(U) и k=k(U) изоморфны, хотя они и состоят из элементов различной природы: все числа из поля k действительные, а для k это уже не так.

Рассмотрим k = GF(2) и неприводимый многочлен p= +x+1 над этим полем. Нам неизвестно никакое большее поле K, в котором следует искать корни этого многочлена. В соответствии с только что доказанной теоремой рассмотрим поле K=k[x]/(p). Всякий его элемент можно записать в виде a+bU, где a , bGF(2), причем +U+1 = 0 . Поле K поэтому содержит 4 элемента: 0 = 0+0U; 1=1+0U; U =0+1U; V = 1+1U. Поле K является расширением поля GF(2) и потому имеет характеристику 2. С учетом этого обстоятельства его элементы складываются очевидным образом. Что касается умножения, то (как и во всяком поле) (a+bU)(c+dU) = ac+(ad+bc)U+bdи остается воспользоваться равенством =U+1. Например, U(U+1) = +U =1 так что элементы U и U+1 взаимно обратны. Поле K обозначается GF(4). В нем многочлен p имеет корень U.  Другим корнем p в том же поле будет V = U+1. Значит в поле GF(4) многочлен p раскладывается на множители первой степени: p = (x+U)(x+U+1).

Поле разложения многочлена.

Пусть pk[x] произвольный многочлен степени n. Разложим его в произведение неприводимых многочленов: p =. Присоединяя к k корень многочлена p построим новое поле, в котором p = (x-a) , где многочлены неприводимы над. Теперь присоединим к корень многочлена и так далее. В результате не более чем через n шагов мы придем к полю K в котором многочлен p распадается, то есть раскладывается в произведение многочленов первой степени: p=

Определение.

Построенное таким образом поле K называется полем разложения многочлена p. Это - наименьшее поле, содержащее k и все корни многочлена p: K = k().

Примеры.

У нас уже появлялись поля разложения. Так мы видели,что Q() -поле разложения многочлена Q[x], Q() - поле разложения многочлена Q[x], GF(4) - поле разложенияGF(2)[x].

Построим поле разложения для p = Q[x]. Заметим, что поле=Q() таковым не является; в этом поле p = и второй множитель q  неприводим даже над R, поскольку его дискриминант меньше нуля. Поле разложения K получится, если мы присоединим к полю один из корней уравнения q(x) = 0, то есть величину, где - кубический корень из 1. Впрочем, поскольку, достаточно присоединить. Первое расширение имеет базис 1, ,. Второе - 1, . По теореме о строении составного расширения,  базис K над Q составляют элементы: 1, ,,,, и [K:Q] =6. Заметим, что  = K, хотя в отдельности ни i ни не входят в K.

Замечание.

Можно доказать ( мы этого делать не будем), что поле разложения данного многочлена определено однозначно с точностью до изоморфизма.

Строение конечных полей.

Теорема о количестве элементов конечного поля.      

Пусть K расширение конечного поля k степени n. Если k содержит q элементов, то K содержит  элементов.

Доказательство.

Пусть - базис расширения. Любой элемент поля K однозначно записывается в виде:, гдеk. Отсюда и вытекает наше утверждение.

Следствие.

Количество элементов конечного поля k  характеристики p равно. В самом деле, kGF(p).

Как нам известно, над полем GF(p) существуют неприводимые многочлены любой степени . Присоединяя ( формально) к GF(p) корень такого многочлена степени n, мы получим расширение KGF(p) степени n. Итак, имеем следующее утверждение.

Теорема существования для конечных полей   

Для всякого натурального n и простого p существует конечное поле из  элементов.

        Рассмотрим теперь многочлен t =, где q =  над полем GF(p). Пусть K какое либо поле, содержащее все корни этого многочлена, так что в K . Отметим, что среди элементов нет одинаковых. В самом деле,  , так что ОНД(t, ) = 1 и t не имеет кратных корней.

Теорема.   

Множество T = {}K является полем из q элементов.

Доказательство.                                                                                                                                                  Надо проверить, что и                                            1. , Но . Значит, 

2. .

Следствие.

Поле T   из элементов является полем разложения многочлена  над GF(p).

Поскольку поле разложения многочлена определено однозначно с точностью до изоморфизма, мы вправе ввести для него специальное обозначение. Это поле называется полем Галуа  в честь французского математика Эвариста Галуа и обозначается GF().

Пусть теперь K любое поле из  элементов. Как нам известно, группа K* - циклическая порядка q-1. Поэтому для любого, а потому  для всех без исключения элементов K. Таким образом всякий элемент xK удовлетворяет уравнению =0  и KGF(q). Поскольку они состоят из одинакового числа элементов, мы получаем:

Теорема.

Любое конечное поле изоморфно GF().

Следствие.

Всякий неприводимый над GF(p) многочлен s степени n является делителем многочлена d =.

В самом деле, присоединяя к GF(p) корень многочлена s, мы получаем поле из элементов. Следовательно, этот корень содержится в GF() и неприводимый многочлен s делит d.

Отметим, что после этого присоединения получается поле разложения многочлена s.

Следствие.

Поле разложения любого неприводимого многочлена s степени n над GF(p) получается в результате присоединения одного единственного корня этого многочлена и изоморфно GF().  Многочлен s не имеет корней в полях GF() при l<n.

Теорема о подполях конечных полей.

Если kGF(), то kGF(),  причем m | n. Обратно, для всякого делителя m числа n в поле GF() существует единственное подполе из  элементов.

Доказательство.

Поскольку k имеет характеристику p оно состоит из q =  элементов. Поле GF() можно рассматривать как расширение степени l поля  k и, следовательно оно состоит из элементов, так что n = ml. Обратно, поскольку kGF(), всякий его элемент удовлетворяет уравнению = x. Это уравнение имеет не более корней в поле GF(), и значит если такое  подполе существует, его элементы определяются однозначно. Остается доказать, что при n = ml уравнение  = x имеет ровно корней в GF(). Проверим, что. Обозначим и заметим, что число целое. Имеем: .Так как y =1 корень числителя, то деление выполняется нацело. Поскольку в поле GF() многочлен распадается, то же верно и для его делителя и потому этот многочлен имеет корней.

Теорема о действии автоморфизма Фробениуса.   

Автоморфизм Фробениуса Ф:  циклически переставляет корни любого неприводимого многочлена степени n над GF(p).

Доказательство.

Пусть s заданный многочлен и a один из его корней. Тогда Ф Достаточно проверить, что все элементы a, Ф(a), ...., Ф попарно различны. Допустим, что Ф(a)= Ф(a), то есть, где i<j<n. Обозначим v = i- j+n. Возводя обе части полученного равенства в степень, получаем: . Таким образом a содержится в поле разложения многочлена, то есть в GF(). Поскольку v<n это невозможно.   


 

А также другие работы, которые могут Вас заинтересовать

40108. Функция выигрыша в матричных играх без седловой точки. Смешанные и оптимальные смешанные стратегии. Метод сведения решения матричных игр к задаче линейного программирования 119.5 KB
  Функция выигрыша в матричных играх без седловой точки. Парная игра с нулевой суммой задается формально матрицей игры матрицей А = {ij} элементы которой определяют выигрыш первого игрока и проигрыш второго если первый игрок выберет iю стратегию а второй jю стратегию. Пара i0j0 называется седловой точкой матрицы решением игры если выполняются условия: mx по столбцу I игрок min по строке II игрок Значение функции выигрыша в седловой точке называется ценой игры. Тогда выигрыш первого игрока при условии что он выбирает...
40109. Методы штрафных функций и методы центров в выпуклом программировании 90 KB
  Методы штрафных функций и методы центров в выпуклом программировании Метод штрафных функций Постановка задачи Даны непрерывно дифференцируемые целевая функция fx = fx1 xn и функции ограничений gjx = 0 j = 1 m; gjx 0 j = m1 p определяющие множество допустимых решений D. Требуется найти локальный минимум целевой функции на множестве D т. Стратегия поиска Идея метода заключается в сведении задачи на условный минимум к решению последовательности задач поиска безусловного минимума вспомогательной функции: Fx Ck =...
40110. Методы наискорейшего и координатного спуска для минимизации выпуклой функции без ограничений. Их алгоритмы и геометрическая интерпретация 94.5 KB
  Все методы спуска решения задачи безусловной минимизации различаются либо выбором направления спуска, либо способом движения вдоль направления спуска. Решается задача минимизации функции f(x) на всём пространстве Rn. Методы спуска состоят в следующей процедуре построения последовательност
40111. Субградиент как обобщение понятия градиента. Субградиент для функции максимума. Субградиентный метод и его геометрическая интерпретация в R2 141 KB
  Субградиент для функции максимума. Градиентом дифференцируемой функции fx в точке называется вектор частных производных.x0 y0 а значение lim называется частной производной функции f по x в т. Вектор называется субградиентом опорным вектором функции fx в точке если выполняется: Таких с множество но это множество ограничено и замкнуто.
40112. Типичные производственные функции с несколькими ресурсами: линейная ПФ, степенная ПФ, ПФ с постоянными пропорциями. Коэффициенты эффективности использования ресурсов для этих типов функций 162 KB
  Коэффициенты эффективности использования ресурсов для этих типов функций. Производственные возможности н х в любой момент времени определяются 2мя группами факторов: технологические условия производства которые выражают зависимости между затратами разных ресурсов и выпуском продукции объем и качество используемых ресурсов fx производственная функция зависимость результата производства объема выпуска продукции от затрат ресурсов. X = х1 хm вектор затрат ресурсов. ПФ характеризует максимально возможный выпуск продукции при...
40113. Показатели эффективности использования производственных ресурсов (коэффициенты средней и предельной эффективности). Коэффициент эластичности выпуска. Вычисление этих показателей для степенной производственной функции 134.5 KB
  Средняя эффективность использования ресурсов показывает отдачу от каждой единицы iго ресурса. Предельная эффективность показывает предельный прирост выпуска продукции при увеличении затрат iго ресурса на малую величину. При этом важен характер изменения эффективности дополнительных количеств используемого ресурса. Если найдем максимальный то определим от какого ресурса получим наибольшую отдачу т.
40114. Модель оптимального поведения потребителей на рынке товаров в условиях товарно-денежных отношений 85.5 KB
  Модель оптимального поведения потребителей на рынке товаров в условиях товарноденежных отношений. Исследуется поведение некоторой группы потребителей на рынке на котором представлены n товаров которые будем обозначать: y = y1 yn набор товаров услуг р = р1 рn заданные цены на товары услуги. Тогда задача имеет вид: Графическая интерпретация для случая двух товаров: Линии уровня имеют такой вид так как чем больше потребитель потребляет товар тем менее предпочтительным он становится Присутствующий в модели принцип...
40115. Вариантная задача развития и размещения производства. Метод коэффициентов интенсивности 98 KB
  Отраслевая модель перспективного планирования разрабатывается на 5-15 лет. В пределах этого времени очень часто показатели принимаются за постоянные. Если же относительно некоторых экономических показателей нельзя сделать предположение о постоянстве, то учитывается изменение во времени за некоторый период времени. При этом показатели вычисляются приближенно с помощью коэффициента дисконтирования.
40116. Модель с фиксированным размером заказа 51 KB
  Модель с фиксированным размером заказа Целесообразность создания запасов: 1 наличие запасов позволяет быстро удовлетворять потребности потребителей. В рассматриваемой системе размер заказа является постоянной величиной и повторный заказ подается при условии что уровень наличных заказов снижается до определенного критического уровня который в теории управления запасами называется точкой заказа. Система с фиксированным размером заказа основана на выборе размера партии минимизирующего общие издержки управления запасами. При этом...