67590

Устройства печати текстовой и графической информации

Лекция

Информатика, кибернетика и программирование

Обобщенная структура печатающего устройства Независимо от способа печати всем типам печатающих устройств присущи общие структурные и конструктивные особенности рис. Ударные печатающие устройства Среди ударных печатающих устройств различают матричные последовательного типа рис.

Русский

2014-09-12

103 KB

1 чел.

Устройства печати текстовой и графической информации

Все печатающие устройства принято классифицировать по семи основным признакам (рис. 19.1):

 принципу действия;

 формированию текста;

 формирования символа;

 способу печати;

 цветности;

 формату бумаги;

 быстродействию.

1. Обобщенная структура печатающего устройства

Независимо от способа печати всем типам печатающих устройств присущи общие структурные и конструктивные особенности (рис. 19.2).

Конструкция печатающей головки зависит от реализуемого  принципа печати. Блок управления обеспечивает через интерфейс связь с ПЭВМ, кодообмен с ПЭВМ в соответствии с протоколом, управление печатающей головкой и механизмом привода в соответствии с режимом печати и поступающими из ПЭВМ управляющими командами, а также взаимодействие с датчиками. В большинстве современных печатающих устройств основные функции в блоке управления выполняет микропроцессор по программе, записанной в ПЗУ. Постоянный знакогенератор находится в ПЗУ, а переменный знакогенератор, а также информация, поступающая из ПЭВМ, хранится в ОЗУ. Схемы формирования вырабатывают сигналы, обеспечивающие работу печатающего механизма.

2. Ударные печатающие устройства

Среди ударных печатающих устройств различают матричные последовательного типа (рис. 19.3, а), с шрифтоносителем типа “ромашка” (рис. 19.3, б), со сферическим шрифтоносителем (рис. 19.3, в) и с шрифтоносителем барабанного типа (рис. 19.3, г).

Матричные печатающие устройства оснащаются загружаемыми из ПЭВМ знакогенераторами, куда пользователь может записать необходимые ему знаки. При этом обеспечивается прямая адресация к ударным элементам печатающей головки. Если матричные устройства знакосинтезирующего типа, то они могут выводить и графическую информацию. Поэлементные описания графических изображений хранятся в ОЗУ блока управления печатью.

3. Бездарные печатающие устройства

Печатающие устройства безударного действия разделяются на струйные, с термографическим способом печати и лазерные.

3.1. Струйные принтеры

Для струйных печатающих устройств (рис. 19.4) печатающая головка содержит несколько (обычно 12) капсул-эмиттеров, имеющих тонкие сопла. Внутри капсулы создаётся избыточное давление, и под действием волнового импульса производится дозирование, и выброс струи чернил через сопло. Капельки чернил заряжаются от источника высокого напряжения и под действием ускоряющего электрического поля направляются к валику, подающему бумагу и являющемуся одним из электродов. Входной сигнал модулирует поток капель аналогично модуляции электрического луча в ЭЛТ. Управление перемещением струи чернил по бумаге осуществляется с помощью отклоняющих пластин. Главным фактором при проектировании струйных печатающих устройств является обеспечение точности управления струёй чернил и обеспечение вязкости красителя при заданном времени высыхания.

3.2. Термопечатающие устройства

Термопечатающие устройства относятся к низкоскоростным и для них необходима специальная термочувствительная бумага, изменяющая цвет под воздействием тепла, выделяемого при нагреве.

Основу термопечатающей головки составляет штабик (рис. 19.5) обычно стеклянный. На нём методами тонкоплёночной, полупроводниковой или толстоплёночной технологии сформированы матрица резистивных нагревательных элементов, контактные площадки и проводники. Такая головка может в процессе работы скользить по бумаге. Символы высотой H и длиной L формируются в виде мозаики, путём воздействия в конкретной точке теплового импульса, полученного от точечного резисторного нагреваемого элемента.

В термовосковых печатающих устройствах используются резиновые валики, покрытые слоем восковых чернил. Тепло, поступающее от печатающей головки, плавит воск, и отпечаток проявляется на бумаге. Эта технология даёт самые сочные, многоцветные и чёткие изображения. Перенос цветного изображения на обычную, а не на специальную бумагу осуществляется при термодиффузионном способе печати.

3.3. Лазерные принтеры

Принцип действия лазерных печатающих устройств схож с принципом действия электростатических копировальных устройств (рис. 19.6).

Центральным элементом системы лазерного печатающего устройства является вращающийся барабан, покрытый чувствительным полупроводниковым слоем, заряженным в темноте, подобно конденсатору. При освещении конкретной точки на поверхности барабана, полупроводниковый слой становится проводящим в этой точке и в ней происходит разряд. Данные, от ПЭВМ преобразуются с помощью лазерно-оптической сканирующей системы в сигналы, моделирующие лазерный луч. При облучении точки поверхности барабана лазерным лучом переменной интенсивности остаточный разряд оказывается пропорциональным изменению интенсивности лазерного луча, и на поверхности барабана создаётся невидимое электростатическое изображение строки или страницы информации. Затем это изображение проявляется с помощью электростатически заряженной пылеобразной краски из пластмассовых частиц. Краска прилипает к поверхности барабана только там, где есть статический заряд (необлучённое пространство). Далее изображение при воздействии электростатического поля переносится на бумагу путём расплавления краски специальными лампами.

Управление печатающими устройствами в основном осуществляется с помощью команд и кодов, стандартизованных фирмами Epson и IBM. Наиболее распространённые команды для любых типов принтеров, а также символы, воспринимаемые принтером как коды, заимствованы из набора символов кода ASCII. Управляющие последовательности начинаются специальным символом ESC (значение в коде ASCII - 27).

Рис. 19.6. Принцип работы лазерного печатающего устройства

Рис. 19.5. Устройство термопечатающей головки

Рис. 19.4. Принцип действия чернильно-струйного печатающего устройства

Рис. 19.3. Принципы действия ударных печатающих устройств

Рис. 19.2. Обобщённая структурная схема печатающего устройства ПЭВМ

Рис. 19.1.  Классификация печатающих устройств


 

А также другие работы, которые могут Вас заинтересовать

23023. Звукова будова мови. Фонетика як наука про звуковий лад мови 33 KB
  Звукова будова мови. Фонетика як наука про звуковий лад мови. Звукове вираження це матеріальна оболонка мови. Матеріальна звукова форма мови є об'єктом фонетики.
23024. Оптимізаційні методи моделювання неперервних початково-крайових умов 475.5 KB
  Постановка задачі та проблеми її розвязання. Ці задачі поставлені та розвязані в лекції 5.1 де узагальнена векторфункція зовнішньодинамічних факторів які моделюються вектор значень моделюючих функцій та а матрична функція яка через функцію Гріна повязана зі специфікою розвязуваної задачі. Позначивши через множину точок дискретизації моделюючих функцій керуючої функції та враховуючи помилки в розвязанні задачі моделювання що визначається величиною 10.
23025. Формули псевдообернення збурених матриць та їх місце в задачах моделювання динаміки систем з розподіленими параметрами 463.5 KB
  Будемо вважати що збурення матриці С виконується в загальному випадку по всіх елементах що спонукає працювати з матрицями СabT та СabT де для LMвимірної матриці С aRL bRM вектори якими і визначається збурення матриці С а отже і системи вцілому. Тому дослідження змін матриць СabT та СabT в залежності від значень векторів а та b є актуальним. Якщо при роботі з матрицею СabT проблем немає залежності від а та b тут явні то для матриці СabT потрібні зручні та ефективні методи та засоби обчислення...
23026. Дослідження моделей лінійних динамічних систем з розподіленими параметрами при скінченновимірних варіаціях параметрів 330 KB
  22 нескінченні прирости. Пройти ці неприємності на шляху до оптимального розвязання задач розміщення спостерігачів та керувачів можна надаючи координатам та скінченні прирости та досліджуючи прирости .6 заключаємо що прирости та можуть бути вирахувані якщо будуть відомі прирости для та для .11 заключаємо що прирости та можуть бути вирахувані якщо будуть відомі прирости для та для .
23027. Псевдоінверсні методи моделювання задач керування лінійними динамічними системами 652 KB
  Інтегральні моделі динаміки лінійних систем і можливості по їх використанню в розвязанні обернених задач.13 були успішно розвязані в попередніх лекціях. Задачі були розвязані точно якщо це можливо або з деяким наближенням якщо точний розвязок задачі не можливий. Цим самим були дані розвязки або найкраще середньоквадратичне наближення до них для задач моделювання зовнішньодинамічної обстановки в якій функціонує система та прямих задач динаміки таких систем.
23028. Задачі ідентифікації динаміки систем з розподіленими параметрами 276.5 KB
  Псевдоінверсні методи [2227] обернення алгебраїчних інтегральних та функціональних перетворень дозволяють виконати таку заміну побудувати моделюючі функції в неперервному або дискретному вигляді тільки при відомій функції матриці Гріна в необмеженій просторовочасовій області. Викладена ж в лекції 2 методика побудови функції дозволяє виконати це для систем динаміка яких описана вже диференціальним рівнянням вигляду 1.7 зведеться до знаходження перетворюючої функції функції Гріна в нашому розумінні такої що 15.4 побудови...
23029. Задачі ідентифікації лінійних алгебраїчних, інтегральних та функціональних перетворень 487 KB
  Постановка та план розвязання задачі. Далі розвязки ідентифікаційних задач 16.3 отримаємо із розвязку допоміжних задач 16. Розглянемо розвязок задачі 16.
23030. Проблеми моделювання динаміки систем з розподіленими параметрами 1.64 MB
  4 і модель ця адекватно описує динаміку фізикотехнічного обєкту процесу то можна ставити і розвязувати: Прямі задачі динаміки визначення векторфункції стану ys при заданих зовнішньодинамічних факторах ; Обернені задачі динаміки визначення векторфункцій які б згідно певного критерію дозволяли отримувати задану картину змін векторфункції ys або наближатися до неї.4 побудовані апробовані практикою а відповідні математичні теорії дозволяють розвязувати як прямі так і обернені задачі динаміки таких систем....
23031. Побудова матричної функції Гріна та інтегральної моделі динаміки систем з розподіленими параметрами в необмеженій просторово-часовій області 249.5 KB
  Функція Гріна динаміки систем з розподіленими параметрами в необмежених просторовочасових областях.10 а також з того що шукана матрична функція Gss' є розвязком рівняння 1.1 де визначені вище матричні диференціальні оператори та матрична функція одиничного джерела. А це означає що матрична функція відповідає фізичному змісту задачі а розвязок її дійсно представляється співвідношенням 1.