67592

ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ

Лекция

Математика и математический анализ

Множества и функции. Эти объекты называются элементами множества S. Множество задают специфицируют двумя способами: перечислением: ={123}; характеристикой свойств общих для элементов множества: А = {X PX} А это множество тех и только тех элементов X для которых P от X есть истинное предложение.

Русский

2014-09-12

142.5 KB

1 чел.

ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ

Литература:

1. Нефедов В.Н., Осипова В.А. Курс дискретной математики. М.: МАИ, 1992. 262 с.

2. Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера. М.: Энергоатомиздат, 1988.

3. Кук Д., Бейз Г. Компьютерная математика. М. Наука, 1990. 384 с.479 с.

4. Бронштейн Е.М. Множества и функции. Методические указания. Уфа: УГАТУ. 1988.

Определение. Под множеством S будем понимать любое собрание определенных и различимых между собой объектов, мыслимое как единое целое. Эти объекты называются элементами множества S.

Существенной деталью является то, что для любого объекта можно установить, принадлежит он данному множеству S или нет.

Множество задают (специфицируют) двумя способами:

-перечислением: A={1,2,3};

- характеристикой свойств, общих для элементов множества:

А = {X | P(X)} (А - это множество тех и только тех элементов X для которых P от X есть истинное предложение).

Примеры :||

А={1,2,3,4,5,6,7,8};

А- есть множество всех Х, таких, что Х-целое и Х>0 и Х<9;

А={X | X - целое, 0<X<9}.

Если элемент Х принадлежит множеству А, то записывают XA, если не принадлежит, то XA. Например, 7А, 6А.

Определение. Множества А и В считаются равными, если они состоят из одинаковых элементов. Обозначение: А=В.

Например,

{1,2,3} = {2,1,3} = {2,1,1,3}

2 {1,2},   {{1,2}} {1,2} (Оболочка!)

То есть элемент не считается равным множеству, если даже множество состоит только из этого элемента.

Парадокс Рассела

Описанные выше понятия теории множеств с успехом могут быть использованы в началах анализа, алгебры, математической логики и т. д. Однако при более строгих рассмотрениях такое интуитивное восприятие может оказаться неудовлетворительным.

Приведем в качестве примера парадокс Рассела.

Можно указать такие множества, которые принадлежат самим себе как элементы, например, множество всех множеств.

Можно также указать множества, которые не являются элементами самих себя, например, множество {1,2}, элементами которого являются числа 1 и 2 (других элементов нет).

Рассмотрим теперь множество А всех таких множеств Х, что Х не есть элемент Х.

Тогда, если это полученное множество А не есть элемент А (самого себя), то по определению, А также есть элемент А.

С другой стороны, если А есть элемент А, то А – одно из тех множеств Х, которые не есть элементы самих себя, т.е. А не есть элемент А (не принадлежит A).

В любом случае А есть элемент А и А не есть элемент А.

Парадокс. Тем самым, интуитивная теория множеств – противоречива. Существует боле строгая формализация теории множеств.

Мы лишь укажем, что к парадоксам приводит в ряде случаев попытка объять необъятное: множество всех множеств (существующих в природе и в нашем сознании).

Отношения между множествами

Определение. Говорят, что А содержится в B или что A есть подмножество множества В, если каждый элемент множества А есть элемент множества В.

Отношение включения между множествами (A содержится в B) обозначается знаком , т.е. AB.

Определение. Если AB и AB, то А есть собственное подмножество В и пишут АВ ||.

Например, {1,2}{1,2,3,4}, множество четных чисел есть собственное подмножество множества целых чисел и т.д.

Свойства отношения включения:

- ХХ; (свойство рефлексивности);

- если XY, YZ, то XZ, (свойство транзитивности);

- если XY, YX, то X=Y (свойство антисимметрии).

Примечание. Не надо путать отношения и . Хотя 1{1}, {1}{{1}}, но 1{{1}}, так как единственным элементом {{1}} является {1}.

Определение. Множество, не содержащее элементов, называется пустым и обозначается . Пустое множество есть подмножество любого множества.

Определение. Множество всех подмножеств A называют множеством - степенью или Булеаном и обозначается B(A).

Пример.

Если А={1,2,3}, то B(А)={,{1},{2},{3},{1,2},{1,3},{2,3},А}.

Утверждение: если A состоит из n элементов, то B(A) состоит из 2n элементов.

Доказательство:

Перенумеруем все элементы множества А. Введем описание подмножества множества А в виде строки из n бит (ячеек, содержащих цифры 0 или 1). 0 на i-том месте означает, что i-тый элемент не принадлежит данному подмножеству, 1- что принадлежит.

0

1

0

0

1

0

1

Например, пустое множество обозначается строкой нулей, само А – строкой единиц.

Тогда число различных комбинаций нулей и единиц равно количеству различных двоичных чисел, которые можно записать в n битах, т.е. 2n.

Действия над множествами

1) Объединением множеств А и В называется множество всех элементов, которые являются элементами хотя бы одного множества А или В:

AB={x | xA или xB}

Некоторые свойства: AAB, BAB.

Диаграммы Эйлера-Венна. Вводится понятие универсального множества U (множества, содержащего все возможные элементы). Этот универсум обозначается квадратом. Другие множества обозначаются кругами внутри этого квадрата.:

       

2) Пересечением множеств А и В называется множество всех элементов, которые являются элементами обоих множеств А и В:

AB={x | xA и xB}

Некоторые свойства: ABAAB,  ABBAB.

3) Абсолютное дополнение (множество всех элементов, не принадлежащих множеству А):   = {x | x  A}

4) Вычитание множеств или относительное дополнение множества А до множества B:   B\A={x | xB, xA}.

Эта операция может быть осуществлена с помощью пересечения и дополнения: B\A=B.

5) Симметрическая разность: A+B=(A\B)(B\A)

Свойства действий над множествами. Алгебра теории множеств

1

AВ=BA (коммутативность объединения );

1

AB=BA (коммутативность пересечения);

2

A(BC)=(AB)C (ассоциативность );

2

A(BC)=(AB)C (ассоциативность );

3

A(BC)=(AB)(AC) (дистрибутивность

относительно );

3

A(BC)=(AB)(AC) (дистрибутивность

относительно );

4

A=A;

4

AU=A;

5

A=U;

5

A=;

6

AA=A;

6

AA=A;

7

AU=U;

7

A=;

8

=

(закон де Моргана);

8

=

(закон де Моргана);

9

A(AB)=A

(закон поглощения);

9

A(AB)=A

(закон поглощения).

Доказательство свойства 3 (с помощью свойства антисимметрии )

Во-первых, A(BC)(AB)(AC).

Действительно, если xA(BC), то xA или xBC.

Если xA, то xAB и xAC. Тогда x(AB)(AC).

Если xBC, то xB и xC. Тогда xBA и xCA, а значит, x(AB)(AC).

Во-вторых, (AB)(AC)A(BC).

На самом деле, если x(AB)(AC), то xAB и xAC. Тогда xA или (xB и (одновременно) xC), т.е. (xВC). Тем самым, xA(BC).

Из первого и второго следует справедливость утверждения.

Доказательство свойства 8 (=).

Пусть x. Тогда xU и xAB      xA и xB      x и x      x    .

Пусть x. Тогда x и x      xU и xA и xB      xAB, т.е. x      .

В силу справедливости того и другого справедливо и доказываемое утверждение.

Задание 

1. Доказать эквивалентность соотношений

  1.  AB;
  2.  AB=A;
  3.  AB=B.

2. Доказать

а) (AC)(BD)(AB)(CD);

б) (B\C)\(B\A)A\C;

в) A\C(A\B)(B\C);

3.  A\(B\C)=(A\B)(AC);

   (A\B)C=(AС)\(BC)=(AС)\B.

4. Следует ли из A\B=C равенство A=BC ?

   из A=BC равенство A\B=C ?

5. Верны ли равенства

   A\(BC)=(A\B)\C ;

   A(B\C)=(AB)\C ;

Существуют ли множества?

AB, AC=, (AB)\C=

Решение: AB=B(A)=BA.

Доказать тождества:

а)

б)

в)

г)

д)


 

А также другие работы, которые могут Вас заинтересовать

74404. КОНУС НАРАСТАНИЯ СТЕБЛЯ 32.5 KB
  Теория справедливая для споровых растений мхов плаунов хвощей и папоротников см. 83 оказалась неверной для голосеменных и покрытосеменных растений. Ганштейн показал что у этих растений единственной апикальной клетки нет конус нарастания их побега массивный многоклеточный и слоистый. По теории гистогенов сформулированной Ганштейном конус нарастания голосеменных и цветковых растений состоит из трех слоев клеток: 1 наружного однослойного дерматогена1 из него возникает кожица эпидермис;2 периблемы состоящей из одного или...
74405. Ксилема 40 KB
  По характеру утолщения стенок различают трахеиды кольчатые спиральные лестничные сетчатые и пористые рис. Пористые трахерды имеют всегда окаймленные поры рис. 101 у хвойных обычно с торусом рис. Трахеиды приспособлены к выполнению двух функций: проведения воды и механического укрепления органа.
74406. Вторичная ксилема 67.5 KB
  Многолетняя деятельность камбия приводит к коренным изменениям в строении древесины и луба. Вторичная ксилема или вторичная древесина Строение древесины хвойных. В трахеидах поздней древесины образованной камбием в конце лета и осенью радиальный размер значительно меньше тангентального; оболочка сильно утолщена а клеточный просвет мал. Трахеиды ранней древесины в соответствии с их строением являются преимущественно элементами проводящей системы; поздние же трахеиды по строению принадлежащие к типу волокнистых трахеид функционируют в...
74407. Вторичная флоэма, или вторичный луб 44.5 KB
  Продольная лубяная паренхима образуется в виде цепочек тяжей лубяной паренхимы или в виде длинных не поделившихся поперечными перегородками клеток камбиформ аналогичных клеткам древесинной паренхимы. Оболочки клеток паренхимы луба обычно одревесневают позже и слабее чем в древесине. Паренхима располагается в лубе в виде тангентальных прослоек у липы радиальными рядами у бузины группами из нескольких клеток у сосен. В паренхиме скопляются запасы в виде крахмала а также в виде гемицеллюлоз откладывающихся в оболочках клеток.
74408. Вторичное утолщение корней 30 KB
  В результате образуется замкнутое камбиальное кольцо с лопастным и только в диархных корнях овальным очертанием на поперечных срезах. У многих многолетних растений деятельность камбия в корнях так же как и в стеблях периодична и часто можно видеть кольца прироста рис. У древесных пород относящихся к двудольным гистологическое различие между древесиной корня и ствола выражено еще более резко: в корнях трахеи и трахеиды более многочисленны и более тесно расположены более тонкостенны а обычно и более широкопросветны1 снабжены более...
74409. Гинецей 59.5 KB
  У некоторых растений столбик не развит рыльце находится непосредственно на завязи и называется сидячим. Так как семяпочки заключены внутри завязи то на них не могут непосредственно как у голосеменных переноситься пылинки.
74410. Половое размножение голосеменных растений 48.5 KB
  Покров вырастает из основания нуцеллуса так называемой халацы обрастает нуцеллус постепенно снизу вверх но на вершине не смыкается оставляя отверстие так называемый пыльцевход или семявход илимикропиле. Из получающихся четырех клеток одна сильно разрастается вытесняя три остальные и большую часть нуцеллуса; это и будет мегаспора...
74411. Заложение и развитие листа 29.5 KB
  Сначала его клетки делятся во всех трех направлениях и зачаток листа растет в толщину и высоту. Довольно рано рост в толщину прекращается и зачаток листа становится плоским. Вначале зачаток листа не разделен на части но вскоре можно различить две части верхнюю и нижнюю причем верхняя апикальная первое время растет быстрее нижней базальной.
74412. Заложение прокамбия и типы строения стеблей 46.5 KB
  Закладывается замкнутое кольцо прокамбия. Довольно часто внутрь от первичной ксилемы часть прокамбия дифференцируется в дополнительные участки внутренней флоэмы барвинок Vinc вьюнок Convolvulus и др. При таком заложении прокамбия листовые следы могут быть совсем незаметны а могут быть хорошо выражены.