67592

ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ

Лекция

Математика и математический анализ

Множества и функции. Эти объекты называются элементами множества S. Множество задают специфицируют двумя способами: перечислением: ={123}; характеристикой свойств общих для элементов множества: А = {X PX} А это множество тех и только тех элементов X для которых P от X есть истинное предложение.

Русский

2014-09-12

142.5 KB

1 чел.

ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ

Литература:

1. Нефедов В.Н., Осипова В.А. Курс дискретной математики. М.: МАИ, 1992. 262 с.

2. Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера. М.: Энергоатомиздат, 1988.

3. Кук Д., Бейз Г. Компьютерная математика. М. Наука, 1990. 384 с.479 с.

4. Бронштейн Е.М. Множества и функции. Методические указания. Уфа: УГАТУ. 1988.

Определение. Под множеством S будем понимать любое собрание определенных и различимых между собой объектов, мыслимое как единое целое. Эти объекты называются элементами множества S.

Существенной деталью является то, что для любого объекта можно установить, принадлежит он данному множеству S или нет.

Множество задают (специфицируют) двумя способами:

-перечислением: A={1,2,3};

- характеристикой свойств, общих для элементов множества:

А = {X | P(X)} (А - это множество тех и только тех элементов X для которых P от X есть истинное предложение).

Примеры :||

А={1,2,3,4,5,6,7,8};

А- есть множество всех Х, таких, что Х-целое и Х>0 и Х<9;

А={X | X - целое, 0<X<9}.

Если элемент Х принадлежит множеству А, то записывают XA, если не принадлежит, то XA. Например, 7А, 6А.

Определение. Множества А и В считаются равными, если они состоят из одинаковых элементов. Обозначение: А=В.

Например,

{1,2,3} = {2,1,3} = {2,1,1,3}

2 {1,2},   {{1,2}} {1,2} (Оболочка!)

То есть элемент не считается равным множеству, если даже множество состоит только из этого элемента.

Парадокс Рассела

Описанные выше понятия теории множеств с успехом могут быть использованы в началах анализа, алгебры, математической логики и т. д. Однако при более строгих рассмотрениях такое интуитивное восприятие может оказаться неудовлетворительным.

Приведем в качестве примера парадокс Рассела.

Можно указать такие множества, которые принадлежат самим себе как элементы, например, множество всех множеств.

Можно также указать множества, которые не являются элементами самих себя, например, множество {1,2}, элементами которого являются числа 1 и 2 (других элементов нет).

Рассмотрим теперь множество А всех таких множеств Х, что Х не есть элемент Х.

Тогда, если это полученное множество А не есть элемент А (самого себя), то по определению, А также есть элемент А.

С другой стороны, если А есть элемент А, то А – одно из тех множеств Х, которые не есть элементы самих себя, т.е. А не есть элемент А (не принадлежит A).

В любом случае А есть элемент А и А не есть элемент А.

Парадокс. Тем самым, интуитивная теория множеств – противоречива. Существует боле строгая формализация теории множеств.

Мы лишь укажем, что к парадоксам приводит в ряде случаев попытка объять необъятное: множество всех множеств (существующих в природе и в нашем сознании).

Отношения между множествами

Определение. Говорят, что А содержится в B или что A есть подмножество множества В, если каждый элемент множества А есть элемент множества В.

Отношение включения между множествами (A содержится в B) обозначается знаком , т.е. AB.

Определение. Если AB и AB, то А есть собственное подмножество В и пишут АВ ||.

Например, {1,2}{1,2,3,4}, множество четных чисел есть собственное подмножество множества целых чисел и т.д.

Свойства отношения включения:

- ХХ; (свойство рефлексивности);

- если XY, YZ, то XZ, (свойство транзитивности);

- если XY, YX, то X=Y (свойство антисимметрии).

Примечание. Не надо путать отношения и . Хотя 1{1}, {1}{{1}}, но 1{{1}}, так как единственным элементом {{1}} является {1}.

Определение. Множество, не содержащее элементов, называется пустым и обозначается . Пустое множество есть подмножество любого множества.

Определение. Множество всех подмножеств A называют множеством - степенью или Булеаном и обозначается B(A).

Пример.

Если А={1,2,3}, то B(А)={,{1},{2},{3},{1,2},{1,3},{2,3},А}.

Утверждение: если A состоит из n элементов, то B(A) состоит из 2n элементов.

Доказательство:

Перенумеруем все элементы множества А. Введем описание подмножества множества А в виде строки из n бит (ячеек, содержащих цифры 0 или 1). 0 на i-том месте означает, что i-тый элемент не принадлежит данному подмножеству, 1- что принадлежит.

0

1

0

0

1

0

1

Например, пустое множество обозначается строкой нулей, само А – строкой единиц.

Тогда число различных комбинаций нулей и единиц равно количеству различных двоичных чисел, которые можно записать в n битах, т.е. 2n.

Действия над множествами

1) Объединением множеств А и В называется множество всех элементов, которые являются элементами хотя бы одного множества А или В:

AB={x | xA или xB}

Некоторые свойства: AAB, BAB.

Диаграммы Эйлера-Венна. Вводится понятие универсального множества U (множества, содержащего все возможные элементы). Этот универсум обозначается квадратом. Другие множества обозначаются кругами внутри этого квадрата.:

       

2) Пересечением множеств А и В называется множество всех элементов, которые являются элементами обоих множеств А и В:

AB={x | xA и xB}

Некоторые свойства: ABAAB,  ABBAB.

3) Абсолютное дополнение (множество всех элементов, не принадлежащих множеству А):   = {x | x  A}

4) Вычитание множеств или относительное дополнение множества А до множества B:   B\A={x | xB, xA}.

Эта операция может быть осуществлена с помощью пересечения и дополнения: B\A=B.

5) Симметрическая разность: A+B=(A\B)(B\A)

Свойства действий над множествами. Алгебра теории множеств

1

AВ=BA (коммутативность объединения );

1

AB=BA (коммутативность пересечения);

2

A(BC)=(AB)C (ассоциативность );

2

A(BC)=(AB)C (ассоциативность );

3

A(BC)=(AB)(AC) (дистрибутивность

относительно );

3

A(BC)=(AB)(AC) (дистрибутивность

относительно );

4

A=A;

4

AU=A;

5

A=U;

5

A=;

6

AA=A;

6

AA=A;

7

AU=U;

7

A=;

8

=

(закон де Моргана);

8

=

(закон де Моргана);

9

A(AB)=A

(закон поглощения);

9

A(AB)=A

(закон поглощения).

Доказательство свойства 3 (с помощью свойства антисимметрии )

Во-первых, A(BC)(AB)(AC).

Действительно, если xA(BC), то xA или xBC.

Если xA, то xAB и xAC. Тогда x(AB)(AC).

Если xBC, то xB и xC. Тогда xBA и xCA, а значит, x(AB)(AC).

Во-вторых, (AB)(AC)A(BC).

На самом деле, если x(AB)(AC), то xAB и xAC. Тогда xA или (xB и (одновременно) xC), т.е. (xВC). Тем самым, xA(BC).

Из первого и второго следует справедливость утверждения.

Доказательство свойства 8 (=).

Пусть x. Тогда xU и xAB      xA и xB      x и x      x    .

Пусть x. Тогда x и x      xU и xA и xB      xAB, т.е. x      .

В силу справедливости того и другого справедливо и доказываемое утверждение.

Задание 

1. Доказать эквивалентность соотношений

  1.  AB;
  2.  AB=A;
  3.  AB=B.

2. Доказать

а) (AC)(BD)(AB)(CD);

б) (B\C)\(B\A)A\C;

в) A\C(A\B)(B\C);

3.  A\(B\C)=(A\B)(AC);

   (A\B)C=(AС)\(BC)=(AС)\B.

4. Следует ли из A\B=C равенство A=BC ?

   из A=BC равенство A\B=C ?

5. Верны ли равенства

   A\(BC)=(A\B)\C ;

   A(B\C)=(AB)\C ;

Существуют ли множества?

AB, AC=, (AB)\C=

Решение: AB=B(A)=BA.

Доказать тождества:

а)

б)

в)

г)

д)


 

А также другие работы, которые могут Вас заинтересовать

46846. Классический психоанализ З.Фрейда. Основные понятия, структура и динамика личности. Стадии психосексуального развития 33 KB
  Фрейд все стадии психического развития человека сводит к стадиям преобразования и перемещения по разным эрогенным зонам либидоносной или сексуальной энергии. Каждая стадия имеет свою либидоносную зону возбуждение которой создает либидоносное удовольствие. Оральная стадия 0 1 год. Оральная стадия характеризуется тем что основной источник удовольствия а следовательно и потенциальной фрустрации сосредоточивается на зоне активности связанной с кормлением.
46848. Two-member and one-member sentences. One-member and elliptical sentences. Two approaches. Types of elliptical sentences 33 KB
  Twomember nd onemember sentences. Onemember nd ellipticl sentences. Types of ellipticl sentences. Twomember sentences
46852. Кризис подросткового возраста. Его преодоление 31.96 KB
  Кризис подросткового возраста, является одной из актуальнейших проблем детей современного мира. Это связано с возникновением современно новых требований, предъявляемых к ним происходящими социально – экономическими преобразованиями.
46853. Определение наивыгоднейших и максимальных зазоров. Влияние основных факторов на износ 33.46 KB
  На процесс изнашивания рабочих поверхностей деталей машин оказывают влияние различные факторы которые можно разделить на две группы: 1 факторы влияющие на износостойкость деталей; 2 факторы влияющие на изнашиваемость деталей. К факторам влияющим на изнашиваемость деталей относятся: вид трения сопряженных деталей; характер и величина удельных нагрузок на поверхностях трения; относительные скорости перемещения трущихся поверхностей; форма и размер зазора между сопряженными поверхностями; условия смазки трущихся поверхностей; наличие...
46854. Государственная гражданская служба в системе государственного управления 33.49 KB
  Данное законом определение государственной службы указывает на ее сущность. Система государственной службы включает в себя следующие виды: 1 государственная гражданская служба; 2 военная служба; 3 правоохранительная служба. Государственная гражданская служба РФ – вид государственной службы представляющий собой профессиональную служебную деятельность граждан РФ на должностях государственной гражданской службы РФ по обеспечению исполнения полномочий федеральных государственных органов государственных органов субъектов РФ лиц замещающих...