67593

Отношения и функции/ Произведение множеств

Лекция

Математика и математический анализ

Две пары считаются равными тогда и только тогда, когда x=u и y=v. Определение. Бинарным или двуместным отношением называют множество упорядоченных пар. Элементы x и y называют координатами или компонентами отношения.

Русский

2014-09-23

116.5 KB

1 чел.

Лекция №2  

Отношения и функции

Определение. Упорядоченной парой <x,y> называется совокупность, состоящая из двух элементов x и y, расположенных в определенном порядке.

Определение. Две пары <x, y> <u, v> считаются равными тогда и только тогда, когда x=u и y=v.

Определение. Бинарным или двуместным отношением  называют множество упорядоченных пар. Элементы x и y называют координатами или компонентами отношения .

Записи <x, y> и  xy  означают, что пара <x, y> принадлежит бинарному отношению .

Определение. Областью определения бинарного отношения  называют множество D={x | существует такое y, что  x  y}. Областью значений  называют множество R={y | существует такое  x, что x  y}.||

Примеры.

1. Множество {<1,2>,<2,4><3,3>,<2,1>} – бинарное отношение.

D={1,2,3}, R={2,4,3,1}={1,2,3,4}.

2. {<x, y> | x, y – действительные числа и x=y} - отношение равенства на множестве R действительных чисел (специальное обозначение «=»). D={x | xR}, R={y | yR}.

3. {<x, y> | для целых чисел x и y найдется положительное число z такое, что x+z=y} – отношение «меньше чем» на множестве целых чисел (специальное обозначение «<»). D и R - множества целых чисел.

Определение. Упорядоченным набором длины n или n-кой элементов называется последовательность, состоящая из n элементов x1, x2, x3,…, xn, расположенных в определенном порядке и обозначается <x1, x2, x3,…, xn>.

Определение. n-нарным отношением называют множество упорядоченных наборов длины n.

Произведение множеств

Определение. Пусть даны n множеств A1, A2,…, An. Множество всех наборов <x1, x2,…, xn> таких, что x1A1,…, xnAn называют прямым произведением A1, A2,…, An и обозначают A1A2An или .

Произведение одинаковых множеств обозначается An.

При n=2   XY={<x, y> | xX, yY}.

Каждое бинарное отношение есть подмножество прямого произведения, так что DX и RY. Если X=Y то говорят, что есть отношение на множестве X.

Примеры

1. Пусть X={0,1}, Y={x,y}. Тогда

XY={<0,x>, <0,y>, <1,x>, <1,y>};

YX={<x,0 >, <x,1>, <y,0>, <y,1>}.

2. X={1,2,3}, Y={0,1}.

XY={<1,0>,<1,1>,<2,0>,<2,1>,<3,0>,<3,1>};

YX={<0,1>,<0,2>,<0,3>,<1,1>,<1,2>,<1,3>}.

(Отметим, что XY  YX.)

К отношению «=» принадлежит одна пара <1,1>.

К отношению «<» в множестве YX принадлежат все пары, кроме <1,1>. В множестве XY таких пар нет.

3. RR - плоскость.

4. X = {x | x  [0,1]}

Y = {y | y  [1,2]}

XY = {<x, y> | x  [0,1], y  [1,2]} – множество точек квадрата:

           

Определение. Обратным отношением для ={<x,y> | <x,y>} называют отношение -1={<y,x> | <x,y>}.

Определение. Композицией отношений 1 и 2 называют отношение 21={<x,y> |  z такое, что <x, z>1 и <z, y>2}.

Свойства бинарных отношений

  1.  ;

2) .

Доказательство п. 2)

<y,x>    <x,y>21;

 z : <x,z>1 и <z,y>2

 z : <z,x>1-1 и <y,z>2-1 

 z : <y,z>2-1 и <z,x>1-1 

<y,x>.

Сравнивая с исходным соотношением убеждаемся в справедливости равенства 2).

Пример: система линейных алгебраических уравнений AB, где A и B - матрицы. Операция умножения матрицы на вектор устанавливает соответствие каждому вектору-операнду  результата операции . Это соответствие есть отношение .

С одной стороны

.

С другой стороны

; .

Тем самым, .

Функции

Определение. Бинарное отношение f называется функцией, если из <x,y>f и <x,z>f следует, что y=z. (Функция является однозначной).

Две функции равны, если они состоят из одних и тех же элементов. Область определения: Df, область значений: Rf.

Если Df =X и Rf Y, то говорят, что f осуществляет отображение множества X на множество Y. Обозначения:

f:XY или .

<x,y>f    y=f(x);  y – образ, x – прообраз элемента y.

Примеры

{<1,2>, <2,3>,< >} – функция;

{<1,2>,<1,3>,<2,4>} - не функция (1 отображается сразу на два элемента);

{<x, x2+2x+1> | x R} - функция y=x2+2x+1

Определение. n-местной функцией называют отношение f, если f:XnY. Обозначение y=f(x1,…,xn).

Определение. Функция f:XY называется инъективной, если

x1, x2, y : y=f(x1), y=f(x2) x1=x2.  (То есть, одинаковые значения y могут соответствовать только одинаковым x).

Определение. Функция f:XY называется сюръективной, если

yY xX : y=f(x). (То есть, каждому значению y соответствует некоторое x).

Определение. Функция f называется биективной, если f одновременно сюрьективна и инъективна.

Говорят, что биективная функция f осуществляет взаимно однозначное отображение множества X на множество Y.

Примеры

f(x)=ex - инъективна, но не сюръективна при x  R;

f(x)=x3-x - сюръективна, но не инъективна;

f(x)=2x+1, f(x)=x3+x – биективна.

Утверждение. Композиция двух функций есть функция.

Доказательство. Допустим, композиции gf принадлежат две пары:

.

Поскольку f – функция, то u=v. Поскольку g – функция и u=v, то y=z, т.е. gof – функция.

Утверждение. Композиция двух биективных функций есть биективная функция. Следует из взаимной однозначности отображений, осуществляемых биективными функциями.

Определение. Тождественным отображением множества X в себя называется отображение 

ex: XX такое, что xX ex(x)=x. Тогда fex=f, eyf=f.

Утверждение. Отображение f:XY имеет обратное отображение f1:YX тогда и только тогда, когда f – биекция.

Доказательство.

Пусть f – биекция. Поскольку f – сюръективна, то отношение f-1 определено на множестве Y (каждому y соответствует определенное x).

В связи с инъективностью функции f обратное отношение f-1 является функцией (так как функция – однозначна, а инъективность означает невозможность соответствия различных x одному y). Прямое утверждение доказано.

Пусть теперь отображение f имеет обратное – f-1, определенное на множестве Y со значениями во множестве X. Тогда f сюръективно.

Но f также инъективно, так как f-1 – функция.

Утверждение доказано.

Замечание. Для того, чтобы обратное отношение f-1 было функцией на множестве значений Rf функции f, достаточно, чтобы функция f была инъективной. Тогда для инъективных функций выполняются следующие свойства бинарных отношений

1) (f)=f;                   2) (gf) =fg.

Свойства биективных функций

3) ff=ex;                  4) ff=ey.


 

А также другие работы, которые могут Вас заинтересовать

10461. Операционные системы - основные понятия 79.05 KB
  Операционные системы основные понятия. Операционная система сокр. ОС англ. operating system комплекс управляющих и обрабатывающих программ которые с одной стороны выступают как интерфейс между устройствами вычислительной системы и прикладными программами а с друг
10462. Ядро операционной системы 35.56 KB
  Тема: Ядро операционной системы. Ядро центральная часть операционной системы ОС обеспечивающая приложениям координированный доступ к ресурсам компьютера таким как процессорное время память и внешнее аппаратное обеспечение. Также обычно ядро предоставляет сервис...
10463. Операционные системы реального времени. Архитектуры ОСРВ 56.33 KB
  Тема: Операционные системы реального времени. Операционная система реального времени ОСРВ англ. RealTime Operating System тип операционной системы. Есть много определений термина по сути похожих друг на друга. Самые распространённые из них: Операционная система в ...
10464. Стандарты ОСРВ 37.03 KB
  Тема: Стандарты ОСРВ. Большие различия в спецификациях ОСРВ и огромное количество существующих микроконтроллеров выдвигают на передний план проблему стандартизации в области систем реального времени. Наиболее ранним и распространенным стандартом ОСРВ является...
10465. Настраиваемость операционных систем 69.04 KB
  Тема: Настраиваемость операционных систем. В последнее время одной из главных тем исследовательских работ в области операционных систем стало исследование настраиваемости customizability или адаптируемости операционной системы. Настраиваемой или адаптируемой операци
10466. Сетевые операционные системы, Управление локальными ресурсами 75.65 KB
  Сетевые операционные системы. Структура сетевой операционной системы Сетевая операционная система составляет основу любой вычислительной сети. Каждый компьютер в сети в значительной степени автономен поэтому под сетевой операционной системой...
10468. Сетевые операционные системы. Управление локальными ресурсами 144.5 KB
  Тема: Сетевые операционные системы. Управление локальными ресурсами. 1. Управление вводомвыводом Одной из главных функций ОС является управление всеми устройствами вводавывода компьютера. ОС должна передавать устройствам команды перехватывать прерывания и об
10469. Сетевые операционные системы. Управление распределенными ресурсами 158.47 KB
  Тема: Сетевые операционные системы. Управление распределенными ресурсами. Базовые примитивы передачи сообщений в распределенных системах. Единственным по-настоящему важным отличием распределенных систем от централизованных является межпроцессная вз...