67593

Отношения и функции/ Произведение множеств

Лекция

Математика и математический анализ

Две пары считаются равными тогда и только тогда, когда x=u и y=v. Определение. Бинарным или двуместным отношением называют множество упорядоченных пар. Элементы x и y называют координатами или компонентами отношения.

Русский

2014-09-23

116.5 KB

1 чел.

Лекция №2  

Отношения и функции

Определение. Упорядоченной парой <x,y> называется совокупность, состоящая из двух элементов x и y, расположенных в определенном порядке.

Определение. Две пары <x, y> <u, v> считаются равными тогда и только тогда, когда x=u и y=v.

Определение. Бинарным или двуместным отношением  называют множество упорядоченных пар. Элементы x и y называют координатами или компонентами отношения .

Записи <x, y> и  xy  означают, что пара <x, y> принадлежит бинарному отношению .

Определение. Областью определения бинарного отношения  называют множество D={x | существует такое y, что  x  y}. Областью значений  называют множество R={y | существует такое  x, что x  y}.||

Примеры.

1. Множество {<1,2>,<2,4><3,3>,<2,1>} – бинарное отношение.

D={1,2,3}, R={2,4,3,1}={1,2,3,4}.

2. {<x, y> | x, y – действительные числа и x=y} - отношение равенства на множестве R действительных чисел (специальное обозначение «=»). D={x | xR}, R={y | yR}.

3. {<x, y> | для целых чисел x и y найдется положительное число z такое, что x+z=y} – отношение «меньше чем» на множестве целых чисел (специальное обозначение «<»). D и R - множества целых чисел.

Определение. Упорядоченным набором длины n или n-кой элементов называется последовательность, состоящая из n элементов x1, x2, x3,…, xn, расположенных в определенном порядке и обозначается <x1, x2, x3,…, xn>.

Определение. n-нарным отношением называют множество упорядоченных наборов длины n.

Произведение множеств

Определение. Пусть даны n множеств A1, A2,…, An. Множество всех наборов <x1, x2,…, xn> таких, что x1A1,…, xnAn называют прямым произведением A1, A2,…, An и обозначают A1A2An или .

Произведение одинаковых множеств обозначается An.

При n=2   XY={<x, y> | xX, yY}.

Каждое бинарное отношение есть подмножество прямого произведения, так что DX и RY. Если X=Y то говорят, что есть отношение на множестве X.

Примеры

1. Пусть X={0,1}, Y={x,y}. Тогда

XY={<0,x>, <0,y>, <1,x>, <1,y>};

YX={<x,0 >, <x,1>, <y,0>, <y,1>}.

2. X={1,2,3}, Y={0,1}.

XY={<1,0>,<1,1>,<2,0>,<2,1>,<3,0>,<3,1>};

YX={<0,1>,<0,2>,<0,3>,<1,1>,<1,2>,<1,3>}.

(Отметим, что XY  YX.)

К отношению «=» принадлежит одна пара <1,1>.

К отношению «<» в множестве YX принадлежат все пары, кроме <1,1>. В множестве XY таких пар нет.

3. RR - плоскость.

4. X = {x | x  [0,1]}

Y = {y | y  [1,2]}

XY = {<x, y> | x  [0,1], y  [1,2]} – множество точек квадрата:

           

Определение. Обратным отношением для ={<x,y> | <x,y>} называют отношение -1={<y,x> | <x,y>}.

Определение. Композицией отношений 1 и 2 называют отношение 21={<x,y> |  z такое, что <x, z>1 и <z, y>2}.

Свойства бинарных отношений

  1.  ;

2) .

Доказательство п. 2)

<y,x>    <x,y>21;

 z : <x,z>1 и <z,y>2

 z : <z,x>1-1 и <y,z>2-1 

 z : <y,z>2-1 и <z,x>1-1 

<y,x>.

Сравнивая с исходным соотношением убеждаемся в справедливости равенства 2).

Пример: система линейных алгебраических уравнений AB, где A и B - матрицы. Операция умножения матрицы на вектор устанавливает соответствие каждому вектору-операнду  результата операции . Это соответствие есть отношение .

С одной стороны

.

С другой стороны

; .

Тем самым, .

Функции

Определение. Бинарное отношение f называется функцией, если из <x,y>f и <x,z>f следует, что y=z. (Функция является однозначной).

Две функции равны, если они состоят из одних и тех же элементов. Область определения: Df, область значений: Rf.

Если Df =X и Rf Y, то говорят, что f осуществляет отображение множества X на множество Y. Обозначения:

f:XY или .

<x,y>f    y=f(x);  y – образ, x – прообраз элемента y.

Примеры

{<1,2>, <2,3>,< >} – функция;

{<1,2>,<1,3>,<2,4>} - не функция (1 отображается сразу на два элемента);

{<x, x2+2x+1> | x R} - функция y=x2+2x+1

Определение. n-местной функцией называют отношение f, если f:XnY. Обозначение y=f(x1,…,xn).

Определение. Функция f:XY называется инъективной, если

x1, x2, y : y=f(x1), y=f(x2) x1=x2.  (То есть, одинаковые значения y могут соответствовать только одинаковым x).

Определение. Функция f:XY называется сюръективной, если

yY xX : y=f(x). (То есть, каждому значению y соответствует некоторое x).

Определение. Функция f называется биективной, если f одновременно сюрьективна и инъективна.

Говорят, что биективная функция f осуществляет взаимно однозначное отображение множества X на множество Y.

Примеры

f(x)=ex - инъективна, но не сюръективна при x  R;

f(x)=x3-x - сюръективна, но не инъективна;

f(x)=2x+1, f(x)=x3+x – биективна.

Утверждение. Композиция двух функций есть функция.

Доказательство. Допустим, композиции gf принадлежат две пары:

.

Поскольку f – функция, то u=v. Поскольку g – функция и u=v, то y=z, т.е. gof – функция.

Утверждение. Композиция двух биективных функций есть биективная функция. Следует из взаимной однозначности отображений, осуществляемых биективными функциями.

Определение. Тождественным отображением множества X в себя называется отображение 

ex: XX такое, что xX ex(x)=x. Тогда fex=f, eyf=f.

Утверждение. Отображение f:XY имеет обратное отображение f1:YX тогда и только тогда, когда f – биекция.

Доказательство.

Пусть f – биекция. Поскольку f – сюръективна, то отношение f-1 определено на множестве Y (каждому y соответствует определенное x).

В связи с инъективностью функции f обратное отношение f-1 является функцией (так как функция – однозначна, а инъективность означает невозможность соответствия различных x одному y). Прямое утверждение доказано.

Пусть теперь отображение f имеет обратное – f-1, определенное на множестве Y со значениями во множестве X. Тогда f сюръективно.

Но f также инъективно, так как f-1 – функция.

Утверждение доказано.

Замечание. Для того, чтобы обратное отношение f-1 было функцией на множестве значений Rf функции f, достаточно, чтобы функция f была инъективной. Тогда для инъективных функций выполняются следующие свойства бинарных отношений

1) (f)=f;                   2) (gf) =fg.

Свойства биективных функций

3) ff=ex;                  4) ff=ey.


 

А также другие работы, которые могут Вас заинтересовать

85498. Направления снижения себестоимости продукции предприятия 740 KB
  Целью дипломной работы является поиск возможных путей снижения себестоимости на основании теоретических исследований проблемы и анализа ее состояния на ООО «Газосиликат». Практическая ценность данной дипломной работы заключается в том, что при применении приведенных в ней мероприятий...
85500. Разработка предложений по выполнению творческих проектов ученикам 7-го класса 3.3 MB
  Цель: разработка рекомендаций учителю технологии по организации выполнения творческих проектов школьников. Задачи: Изучить особенности реализации метода творческих проектов в общеобразовательной средней школе Исследовать особенности подготовки творческих проектов к защите их олимпиаде по технологии...
85501. Разработка математической модели влияния структуры налогов на деятельность частных предприятий 926.5 KB
  Предприятия в рыночной экономике. Предприятие как самостоятельная хозяйственная единица владеет правами юридического лица то есть оно имеет право свободного распоряжения имуществом получать кредит входить в договорные отношения с другими предприятиями.
85502. Электроснабжение горного предприятия ЗАО «Запорожский железорудный комбинат» (ЗАО «ЗЖРК») 507.66 KB
  В рудничное комплексное распределительное устройство КРУРН6 рудничные комплектные трансформаторные подстанции серии ТСВП ряд рудничных комплексных станций управления электроприводами механизированных комплексов очистных и подготовленных забоев рудничные автоматические...
85504. ОСОБЕННОСТИ ТАКТИКИ ПЕРВОНАЧАЛЬНЫХ И ПОСЛЕДУЮЩИХ СЛЕДСТВ СЛЕДСТВЕННЫХ ДЕЙСТВИЙ 128.03 KB
  Исходя из этого можно сделать вывод о том что кражи чужого имущества являются самыми распространенными деяниями из всех преступлений совершаемых на территории Тюменской области. Чаще всего встречаются кражи из квартир дач гаражей и других помещений принадлежащих отдельным гражданам кражи личных вещей на вокзалах и в поездах и т. Способы совершения краж весьма разнообразны: кражи государственного или общественного либо личного имущества граждан из помещений; кражи личного имущества граждан не связанные с проникновением в помещение...
85505. Разработка ИС выбора оптимального решения замены оборудования промышленного предприятия 674.5 KB
  В данной работе делается попытка решения проблемы распределения денежных средств предприятия на обновление основных фондов которое производится путем приобретения нового оборудования либо капитального ремонта старого предприятия. Для этой цели была спроектирована информационная система...
85506. Разработка предложения относительно улучшения реформирования пенсионного обеспечения 327 KB
  Актуальность указанного направления все более возрастает в связи с провозглашением в Украине курса на внедрение взвешенной экономической политики. Уменьшение поступлений в бюджет заострило проблему финансирования областей образования, здравоохранения, науки, культуры.