67594

Специальные бинарные отношения

Лекция

Математика и математический анализ

Примеры. «=» на множестве целых (действительных) чисел – отношение эквивалентности. Отношение геометрического подобия на множестве треугольников – отношение эквивалентности. Сравнимость по модулю 2 (или n) отношение эквивалентности на множестве целых чисел. Отношение принадлежности к одной группе...

Русский

2014-09-12

115 KB

6 чел.

Лекция №3

Специальные бинарные отношения

В данном разделе рассматриваются отношения элементов одного и того же множества X.

Определение. Отношение на множестве X называется рефлексивным, если для любого  выполняется . (=,≤,≥,)

Определение. Отношение на множестве X называется антирефлексивным, если  не выполняется ни для какого . (≠,<,>,)

Определение. Отношение на множестве X называется симметричным, если  для любых . (=,≠)

Определение. Отношение на множестве X называется антисимметричным, если для любых x,yX из xy и yx  x=y. (≤,≥,)

Определение. Отношение на множестве X называется строго антисимметричным, если для любых x,yX из <x,y>  <y,x>. (<,>,)

Определение. Отношение на множестве X называется транзитивным, если для любых .  (=,≤,≥,,<,>,), не транз. ()

Определение. Рефлексивное, симметричное и транзитивное отношение на множестве X называется отношением эквивалентности на множестве X.

Примеры. ||

1. «=» на множестве целых (действительных) чисел – отношение эквивалентности.

2. Отношение геометрического подобия на множестве треугольников – отношение эквивалентности.

3. Сравнимость по модулю 2 (или n) отношение эквивалентности на множестве целых чисел.

4. Отношение принадлежности к одной группе студентов – отношение эквивалентности на множестве всех студентов.

5. Отношение «<» не рефлексивно, не симметрично, но транзитивно.

Определение. Классом эквивалентности, порожденным элементом xX, называется подмножество множества X, состоящее из таких элементов yX, для которых xy. Обозначение: [x]. Т.е. [x]={yX | xy}.

Примеры.

1. Отношение равенства: xZ  [x]={x}, т.е. каждый класс эквивалентности состоит из одного элемента – числа x.

2. Отношение сравнимости по модулю n: [x]={x+kn, kZ}.

3. Отношение принадлежности к одной группе студентов: класс эквивалентности – группа.

Определение. Разбиением множества X называется совокупность попарно не пересекающихся подмножеств X, таких, что каждый элемент множества X  одному и только одному из этих подмножеств.

Примеры. 

1. . Разбиение:.

2. Разбиением множества студентов института может быть совокупность групп.

Утверждение. Всякое разбиение множества X определяет на X следующее отношение эквивалентности :

xy тогда и только тогда, когда x и y принадлежат одному подмножеству разбиения.

Утверждение. Всякое отношение эквивалентности  определяет разбиение множества X на классы эквивалентности.

Справедливость утверждений очевидна.

Определение. Совокупность классов эквивалентности элементов любого множества X по отношению эквивалентности  называется фактор-множеством множества X по отношению  и обозначается  X/.

Пример. Множество студенческих групп данного вуза является фактор-множеством множества студентов вуза по отношению принадлежности к одной группе.

Определение. Рефлексивное, антисимметричное и транзитивное отношение называется отношением нестрогого частичного порядка на множестве X 

Обозначение  (предшествовать).

Примеры  

Отношения x  y, A  B, подчиненность должностей – отношения частичного порядка на соответствующих множествах.

Определение. Антирефлексивное, строго антисимметричное и транзитивное отношение называется отношением строгого частичного порядка на множестве X 

Обозначение  (строго предшествовать, т.е. одновременно  и ).

Примеры.  

Отношения x < y, A  B – отношения строгого частичного порядка на соответствующих множествах.

Определение. Отношение частичного порядка на множестве X, для которого два элемента сравнимы (т.е. x, y  X   xy либо yx) называется отношением линейного порядка (строгого или нестрогого).

Пример  

1. Отношение x  y – отношение линейного порядка на множестве действительных чисел.

2. A  B таковым не является.

3. Как можно задать отношение частичного порядка на множестве XX? Определим отношение Парето

,

которое есть отношение частичного порядка.

В качестве примера рассмотрим подмножество целых чисел и в качестве - отношение . К множеству Парето принадлежат те пары <x1,x2>, для которых справедливы не существует таких пар <x3,x4>, что x1x3 и x2x4.

Определение. Говорят, что элемент y покрывает элемент x, если xy и не существует такого элемента u, что xuy.

Любое частично упорядоченное множество можно представить в виде диаграммы Хассе. Если y покрывает x, то две точки, соответствующие этим элементам, соединяют отрезком, причем x располагают ниже y.

xy                

Пример.  Отношение «быть подмножеством». Пусть  A{1,2,3}

B(A) = {, {1}, {2}, {3}, {1,2}, {1,3}, {2,3},{1,2,3}}

2. X = {1,2,3,5,6,10,15,30}

Отношение:  y делится на x

       

3. X = {1,2,3,4,5,6,7,8}

Отношение линейного порядка: x<y.

Определение. Два частично упорядоченных множества X и Y называются изоморфными, если существует биективная функция сохраняющая отношение частичного порядка. ||

Т.е

Задания.

1. Привести примеры отношений:

– не рефлексивного, но симметричного и транзитивного (позвонить по телефону, быть родственником);

– не симметричного, но рефлексивного и транзитивного (делимость нацело одного числа на другое, );

– не транзитивного, но рефлексивного и симметричного (принадлежать одному множеству или обществу, AB);

– не симметричного, не транзитивного, но рефлексивного (знать (узнавать) кого-то);

– не рефлексивного, не симметричного, но транзитивного (<,>);

– не рефлексивного, не транзитивного, но симметричного ();

2. Рассмотрим отношения (на множестве прямых на плоскости):

– параллельности прямых;

– перпендикулярности прямых.

Определить свойства этих отношений. Изменятся ли эти свойства, если рассмотреть прямые в пространстве? Плоскости в пространстве?

ЗАДАЧИ

  1.  В отношении большой-маленький не находятся понятия

  1.  высокий-низкий

глубокий-мелкий

широкий-узкий

долгий-короткий

высокий-мелкий

  1.  В отношении целое-часть не находятся понятия

  1.  год-месяц

квартира-комната

отец-ребенок

страна-губерния

школа-класс

  1.  В отношении общее-частное не находятся понятия

  1.  мебель-стол

время-час

устройство-часы

магазин-товар

человечество-личность

  1.  В отношении процесс-результат не находятся понятия

  1.  строительство-дом

созревание-плод

движение-цель

обучение-квалификация

строительство-стройка

  1.  В отношении объект-модель не находятся понятия

  1.  одежда-выкройка

движение-законы Ньютона

лампа-свет

класс-список учеников

жизнь человека-биография

  1.  В отношении большой-маленький не находятся понятия

  1.  Далекий-близкий
  2.  Взрослый-ребенок
  3.  Полный-худой
  4.  богатый-бедный
  5.  век-миг

  1.  В отношении целое-часть не находятся понятия

  1.  учебник-раздел

ружье-приклад

комната-мебель

кошка-хвост

стадион-трибуна

  1.  В отношении общее-частное не находятся понятия

  1.  самолет-Боинг

лекарство-аспирин

механизм-весы

книжный шкаф-книга

болезнь-ангина

  1.  В отношении процесс-результат не находятся понятия

  1.  разбег-прыжок

питание-энергия

познание-истина

обучение-аттестат

взлет-посадка

  1.  В отношении объект-модель не находятся понятия

  1.  дом-план

микромир-квантовая механика

книга-текст

знания-оценка

предмет-тень


 

А также другие работы, которые могут Вас заинтересовать

46653. Declarative sentences 24.5 KB
  A declarative sentence contains a statement which gives the reader or the listener some information about various events, activities or attitudes, thoughts and feelings. Statements form the bulk of monological speech, and the greater part of conversation. A statement may be positive (affirmative) or negative, as in...
46654. Рак легкого. Классификация. Стадии процесса. Пути метастазирования. Современные принципы лечения 24.66 KB
  Различают две формы: центральный рак легкого исходящий из крупного или мелкого бронха и периферический рак развивающийся из самой ткани легкого. Различают центральный рак легкого растущий преимущественно внутри или перибронхиапьно 80 случаев; периферический рак; редко диагностируется медиастинальная форма милиарный узелковый карциноз и др. По гистологической структуре раки легкого чаще всего бывают плоскоклеточными хотя наблюдаются также железистые формы аденокарциномы резко анаплазированные мелкоклеточный рак...
46655. Становление и развитие экологического права. Проблемы дифференциации и интеграции в развитии экологического права 24.72 KB
  Лишь в 70е годы применительно к водам и в 80е применительно к атмосферному воздуху проблемы охраны окружающей среды от загрязнения стали оцениваться и регулироваться как экологические. В то время не законы а именно правительственные постановления определяли некоторые комплексные подходы к регулированию природопользования и охраны окружающей среды как единого объекта. В конце 80х годов ЦК КПСС и Правительство СССР осознавали что основными причинами резкого ухудшения состояния окружающей среды в стране являлись: слабое правовое...
46656. Договор международного факторинга 24.74 KB
  Договор международного факторинга это специфический по своему характеру вид факторинга. Преимущества субъектов международного факторинга Поставщик отгрузивший продукцию получает оплату за товар не дожидаясь оплаты покупателем что увеличивает объемы продаж и конкурентоспособность. Содержание договора международного факторинга ПРЕДМЕТ ДОГОВОРА Согласно ст.
46657. Международный кодекс рекламной практики 24.91 KB
  Реклама должна расцениваться прежде всего с точки зрения ее воздействия на покупателя причем следует обращать внимание каким видом СМИ она будет распространяться. Определения Для целей настоящего Кодекса: термин реклама должен употребляться в самом широком смысле включающем любую форму рекламы относительно изделий услуг и благ независимо от вида СМИ которое используется в том числе рекламные надписи и изображения на упаковках этикетках. А также любые надписи и изображения на самом товаре; термин товар включает изделия...
46658. Макроэкономическая нестабильность: инфляция 28.87 KB
  Главным показателем инфляции явлся темп инфляции процентное отношение разницы уровня цен текущего и базисного периода. П темп инфляции П = Р1Р0 Р0 100 По уровню темпа инфляции выделяют виды инфляции: Умеренная ползучая темп инфляции составляет до 10 в год; галопирующая выражается 2ух значными числами и считается серьезной экон проблемой; гиперинфляция измеряется в месяц и может составлять более 100 в год....