67595

Понятие алгебры. Фундаментальные алгебры

Лекция

Математика и математический анализ

Алгеброй называется совокупность MS множества M с заданными в нем операциями где множество M носитель S сигнатура алгебры. Алгебра называется полем действительных чисел. Алгебра вида называется группоидом индекс 2 здесь означает местность операции.

Русский

2014-09-12

113 KB

12 чел.

Понятие алгебры. Фундаментальные алгебры.

Литература : см. тему "Множества" и дополнительно:

1. Бронштейн Е.М. Математические этюды. Учебное пособие. Уфа: УРЭК. 1997. 64 с.

2. Горбатов В.А. Основы дискретной математики. Учебное пособие для вузов. М.: Высшая школа. 1986. 311 с.

Определение. Алгеброй A называется совокупность <M,S> множества M с заданными в нем операциями

,

где множество M - носитель, S - сигнатура алгебры.

Обозначение .

Примеры. 

1. Алгебра  называется полем действительных чисел.

На множестве целых чисел определены операции сложения и умножения по модулю n (остатки от деления на n).

M - множество подмножеств универсума U (множество-степень или булеан). К основным операциям, определенным на нем, отнесем объединение и дополнение (пересечение определяется с помощью этих двух операций ).

Определение. Алгебра вида  называется группоидом (индекс 2 здесь означает местность операции.

Если f2 операция типа умножения (), то группоид называют мультипликативным, если f2 операция типа сложения (+), то аддитивным.

Обозначим f2 как . Тогда элемент eM называется правым нейтральным элементом группоида A, если mM  . Элемент eM группоида  называется левым нейтральным элементом, если mM  . Если элемент является одновременно левым и правым нейтральным элементом, то его называют двусторонним нейтральным элементом или просто нейтральным элементом.

Утверждение. Группоид не может иметь более одного нейтрального элемента.

Действительно, если

mM    и  ,

то ,      .

Если группоид мультипликативный, то нейтральный элемент называется единицей (1), если аддитивный, то нейтральный элемент называется нулем (0).

Группоид , сигнатура которого удовлетворяет закону коммутативности

(x,yM   xy=yx),

называется коммутативным или абелевым.

Группоид, в котором выполняется закон ассоциативности

(x,y,zM   x(yz)=(xy)z,

называется ассоциативным или полугруппой.

Полугруппа с единицей называется моноидом.

Полугруппа , в которой выполнимы обратные операции:

(a,bM каждое из уравнений ax=b, ya=b обладает единственным решением), называется группой.

Группа, в которой операция коммутативна, называется абелевой.

Группа, все элементы которой являются степенями одного элемента a (для аддитивной группы - произведением ka), называется циклической. Циклическая группа всегда абелева.

Примеры.

1. Множество рациональных чисел, не содержащее нуля, с операцией умножения является абелевой группой.

2. Множество целых чисел с операцией сложения является абелевой циклической группой. Роль единицы играет 0, обратным к a является элемент -a.

3. Множество невырожденных квадратных матриц порядка n с операцией умножения является некоммутативной группой.

Определение. Алгебра , которая по умножению является мультипликативным группоидом, по сложению - абелевой группой, причем умножение связано со сложением законами дистрибутивности

,

,

называется кольцом. Кольцо, в котором все отличные от нуля элементы составляют группу по умножению, называется телом. Тело, у которого мультипликативная группа абелева (коммутативна), называется полем.

Изоморфизм групп

В любом разделе математики одним из важнейших является вопрос, какие из рассматриваемых объектов считаются равными.

Определение. Две группы  и  называются изоморфными, если между множествами M и M' можно установить взаимно однозначное соответствие  такое, что , где a и b - произвольные элементы множества M.


 

А также другие работы, которые могут Вас заинтересовать

17846. ЦЕЛИ И ЗАДАЧИ ГОСУДАРСТВЕННОЙ РЕГИОНАЛЬНОЙ ФИНАНСОВОЙ ПОЛИТИКИ 59.5 KB
  Тема 12. ЦЕЛИ И ЗАДАЧИ ГОСУДАРСТВЕННОЙ РЕГИОНАЛЬНОЙ ФИНАНСОВОЙ ПОЛИТИКИ 1. Понятие государственная региональная финансовая политика 2. Цели государственной региональной финансовой политики 3. Задача государственной региональной финансовой политики 4. Регио
17847. КОМПЕТЕНЦИЯ МЕСТНЫХ ОРГАНОВ ВЛАСТИ В ОБЛАСТИ ФИНАНСОВ 86.5 KB
  Тема 13. КОМПЕТЕНЦИЯ МЕСТНЫХ ОРГАНОВ ВЛАСТИ В ОБЛАСТИ ФИНАНСОВ План 1. Составление утверждение и выполнение местного бюджета 2. Бюджетный процесс 3. Образование внебюджетных целевых резервных и валютных фондов 4. Установление местных налогов и сборов Под ко...
17848. МЕСТНЫЕ ФИНАНСОВЫЕ ОРГАНЫ И ИХ ФУНКЦИИ 39 KB
  Тема 14. МЕСТНЫЕ ФИНАНСОВЫЕ ОРГАНЫ И ИХ ФУНКЦИИ План 1. Виды местных финансовых органов 2. Местные финансовые органы в зарубежных странах 1. Виды местных финансовых органов Управление местными финансами осуществляется местными представительными и исполнительн...
17849. ОРГАНИЗАЦИЯ КАССОВОГО ИСПОЛНЕНИЯ МЕСТНЫХ БЮДЖЕТОВ, КОНТРОЛЯ И АУДИТА В МЕСТНЫХ ОРГАНАХ ВЛАСТИ 67 KB
  Тема 15. ОРГАНИЗАЦИЯ КАССОВОГО ИСПОЛНЕНИЯ МЕСТНЫХ БЮДЖЕТОВ КОНТРОЛЯ И АУДИТА В МЕСТНЫХ ОРГАНАХ ВЛАСТИ План 1. Понятие и системы кассового исполнения местных бюджетов 2. Оборотная кассовая наличность 3. Кассовое исполнение местных бюджетов в зарубежных странах ...
17850. Совершенная конкуренция 7.08 MB
  Задача 4 Тема Совершенная конкуренция Исходные данные: Год рождения студента ГР = 1980 Месяц рождения студента МР = 4 День рождения студента ДР = 21 На рынке совершенной конкуренции отраслевой спро
17851. Монополия. Задача 1.98 MB
  Задача 5 Тема: Монополия Исходные данные: Год рождения студента ГР = 1999 Месяц рождения студента МР = 5 День рождения студента ДР = 23 Рыночная функция спроса имеет следующий вид: QD = ГР/3 05×МР×P = 666 25Р Фу
17852. Потребительский выбор 1.1 MB
  Задача 1 Тема Потребительский выбор Исходные данные: Год рождения студента: ГР = 1985 Месяц рождения студента: МР = 1 День рождения студента: ДР = 3 Функция полезности потребителя: TU = ГР × А × В =1985АВ Доход потребителя: I = ГР = 1985 Цена блага А: PА = 5 × ДР = ...
17853. Производство экономических благ 1.11 MB
  Задача 2 Тема Производство экономических благ Исходные данные: Год рождения студента ГР = 1996 Месяц рождения студента МР = 2 День рождения студентаДР = 25 Производстве
17854. Спрос и предложение. Рыночное равновесие 3.54 MB
  Задача 3 Тема: Спрос и предложение. Рыночное равновесие Исходные данные: Год рождения студента ГР = 1996 Месяц рождения студента МР = 3 День рождения студента ...