67596

Сравнение множеств

Лекция

Математика и математический анализ

Множества и B называются равномощными если между и B существует взаимно однозначное соответствие т. Доказательство Если количество элементов одинаково то перенумеруем их и установим взаимно однозначное соответствие Следовательно множества равномощны.

Русский

2014-09-12

136 KB

2 чел.

Лекция №5

Сравнение множеств

Литература:

1. Бронштейн Е.М. Множества и функции. Методические указания. Уфа: УГАТУ. 1988.

Определение. Множества A и B называются равномощными, если между A и B существует взаимно однозначное соответствие (т.е. биективное отображение ).

Утверждение. Отношение равномощности множеств является отношением эквивалентности.

Доказательство.

1) Рефлексивность можно установить, отображая множество само на себя с помощью функции f(x)=x. То есть |A|=|A|.

2) Симметричность. Если  взаимно однозначное соответствие, то и  - также взаимно однозначное соответствие.

3) Транзитивность . Т. е. |A|=|B|, |B|=|C| |A|=|C|.

Рассмотрим разные случаи.

Случай 1. A и B конечны.

Утверждение. В случае, когда A и B конечны (содержат конечное число элементов) A и B равномощны тогда и только тогда, когда количество элементов A = количеству элементов B.

Доказательство ||

a) Если количество элементов одинаково, то перенумеруем их и установим взаимно однозначное соответствие

     

Следовательно, множества равномощны.

б) Пусть множества A и B равномощны. Тогда существует взаимно однозначное соответствие между элементами A и B . Следовательно, их количество должно быть одинаковым.

Поэтому для конечных множеств A можно принять, что мощность |A|=количеству элементов A.

Случай 2. Бесконечные множества

Мощность целого может равняться мощности части. Рассмотрим множества

Можно установить () соответствие: . Следовательно, множества равномощны.

Определение. Говорят, что мощность множества A не превосходит мощности множества B (пишут ), если  множество .

В частности, если AB, то B1=A.

Определение. Говорят что A меньше B (  ), если:

1)

2)

Теорема. Отношение  на совокупности множеств есть отношение частичного порядка для мощностей множеств.

1) Рефлексивность .

2) Транзитивность .

Существуют подмножества B1B и C1C и отображения такие, что f:A B1, g:BC1. Тогда gf - соответствие между A и каким-то подмножеством C.

3) Антисимметричность  (без док-ва).

Теорема.   - отношения линейного порядка (без док-ва).

Теорема Кантора. Пусть N – множество натуральных чисел, A=[0,1] – отрезок действительной оси. Тогда N<A.

Доказательство.

1) Во-первых,, поскольку подмножество множества A  очевидно, равномощно N.

2) Неравенство  докажем от противного.

Допустим, N=A. Тогда   .

Любое число из A можно представить в виде бесконечной десятичной дроби

f(1)=a1=0,a11a12

f(2)=a2=0,a21a22

f(3)=a3=0,a31a32a33

………………..

f(n)=an=0,an1an2an3…ann

………………..

Построим число b=0,b1b2b3… следующим образом:

  b[0,1] и ban, поскольку b отличается от an в n-ном знаке.

Приходим к противоречию. Теорема доказана.

Счетные множества

Определение. Множество, равномощное множеству натуральных чисел  называется счетным.

Примеры.

{0, 1, 2, 3,…}

N = 1, 2, 3, 4, 5   A = 0, 1, -1, 2, -2, 3, -3

Теоремы о счетных множествах

Теорема 1.  множество содержит счетное подмножество.

Док-во.

Выберем элемент a1A (A не пусто, так как оно бесконечно);

выберем элемент a2A\{a1} (A\{a1} не пусто, так как A бесконечно);

и т.д. В результате получим множество, каждому элементу которого сопоставлено натуральное число n.

Теорема 2.    подмножество B счетного множества A счетно.

Д-во.  Согласно Т1 из множества B можно выделить счетное C.

Тогда CBA. В силу определения мощности |C||B||A|. Так как A и C – счетные, то |A|=|C|. Т. е. |A||B||A|. Отсюда следует, что |B|=|A|.

Тем самым, счетное множество равномощно своей части.

Т-ма 3. Объединение конечного или счетного семейства счетных множеств – есть счетное множество.

Доказательство. Пусть  

A1={a11,a12,…},

A2={a21,a22,…},

A3={a31,a32,a33,…},

………………..

An={an1,an2,an3,…,ann,…},

………………..

Расположим элементы A в следующем порядке

a11,a12,a21,a31,a22, a13,a14,a23,a32,a41,…

Тем самым, получили взаимно однозначное отображение N на A.

Если в множествах A1, A2, A3,… есть общие элементы, то их объединение A есть подмножество рассмотренной выше последовательности. Но согласно теореме 2 оно счетно.

Следствие 1. Если A и B счетные, то A x B – счетное.

Следствие 2. множество рациональных чисел – счетное

1

2

3

4

1

1/1

1/2

1/3

1/4

2

2/1

2/2

2/3

2/4

3

3/1

3/2

3/3

3/4

4

4/1

….

….

….

….

….

….

….

Следующая теорема позволяет утверждать, что не существует «самого большого» по мощности множества.

Теорема. Мощность булеана множества всегда больше мощности самого множества, т.е |M|<|B(M)|.

Доказательство.

Так как MB(M), то |M||B(M)|.

Допустим, что |M|=|B(M)|. Значит,   соответствие f:MB(M), т.е. каждому эл-ту xM поставлено в соответствие некоторое множество {xi1, xi2,…}=f(x). Возможны ситуации, когда xf(x) и когда xf(x).

Выделим множество P={x | xf(x)}. Тогда эл-т yM такой, что f(y)=P (поскольку соответствие f:MB(M), между эл-тами x и подмнож-вами , а B(M)- булеан, то каждому подмн-ву в том числе и P поставлен в соответствие некоторый эл-т yM).   

Приведем это заключение к противоречию. Возможны два случая: либо yP, либо yP.  

Пусть yP. Тогда по определению P yP. Противоречие.

Пусть yP. Поскольку в P входят все эл-ты xf(x), то yP. Опять противоречие.

Теорема доказана.

Теорема. Мощность булеана (множества-степени) счетного множества = мощности континуума: |P(N)|=| [0,1] |.

Доказательство.

Пусть 0,010…1… – запись любого числа из A=[0,1] в 2ой системе счисления.

Сопоставим этому числу подмножество N, состоящее из чисел, равных номерам разрядов, в которых записана единица. Этим устанавливается взаимно однозначное соответствие между B(N) и [0,1].

Примеры. 

Установить равномощность или неравномощность множеств

1) A = [0,1], B [1,2]

    x  A          y  B y = x + 1

2) A = [0,1], B = [0,2] y = 2x

3) A = [0,1], B = [a,b] y = a + x ( b – a )

4) A = [0,1), B = [1,  ) y =

5) A = [0,1], B = [0,1)  y=x, x2-(n-1); y=2-(n-1)/2, x=2-(n-1), n=1,2,3,…


 

А также другие работы, которые могут Вас заинтересовать

4405. Фанализ - филосовско-аналитическая теория истины 152 KB
  Эта работа была задумана для рассмотрения более объективной оценки окружающего мира. Здесь рассматриваются более двадцати вопросов, наиболее значимых, при объяснении такого подхода поиска истины как Фанализ. Этот взгляд должен дать толчок для самора...
4406. Разработка тягового и топливно-экономического расчета автомобиля 1.09 MB
  В курсе теории автомобиля тяговый и топливно-экономический расчет является одним из важнейших разделов. Этот расчет позволяет по некоторым заданным параметрам определить остальные конструктивные и эксплуатационные параметры...
4407. Адвокат в гражданском процессе 268.5 KB
  Адвокат в гражданском процессе Введение Современный человек постоянно сталкивается с ситуациями, в которых ему необходимо руководствоваться теми или иными правовыми предписаниями, то есть законодательно закрепленными общеобязательными правилами пове...
4408. Административная ответственность за нарушение налогового законодательства 311 KB
  Административная ответственность за нарушение налогового законодательства Введение Процесс формирования норм налогового законодательства выявил особую актуальность установления ответственности за налоговые нарушения. Прямая зависимость государственн...
4409. Адвокатура Украины. Организация современной адвокатуры Украины 63 KB
  Адвокатура Украины. Организация современной адвокатуры Украины. Принципы и гарантии адвокатской деятельности. Согласно Закону адвокатура Украины является добровольным профессиональным общественным объединением, призванным содействовать защите прав, свобо...
4410. Альтернативные источники энергии 62 KB
  Perpetuum-mobile Сенсационное сообщение пришло из Англии. Изобретатель Джон Серл сконструировал летательный аппарат в виде вращающегося диска. Аппарат потребляет энергию только при разгоне, а затем летит сам по себе по классическому варианту вечного...
4411. Расчет четырехтактного бензинового двигателя типа R4 с распределенным впрыском топлива и электронным управлением системой питания и зажигания 3.08 MB
  Введение Поршневые двигатели внутреннего сгорания (ДВС) – самый распространенный тип энергетической установки, на сегодняшний день, используемый на автомобилях, тракторах, тепловозах, на судах и т.п...
4412. Машина Больцмана та мережа INSTAR 446.5 KB
  Машина Больцмана та мережа INSTAR. План: Мета роботи. Теоретичні відомості. Постановка задачі. Алгоритм розв`язку задачі. Виконання роботи. Висновок. Мета: Вивчити принципи функціонування вказаних мереж та навч...
4413. Системи управління приладами у середовищі розробки MATLAB 1.24 MB
  MATLAB (скорочення від англ. Matrix Laboratory) - пакет прикладних програм для вирішення задач технічних обчислень і однойменний мов програмування, що використовується в цьому пакеті. MATLAB використовують більше 1 000 000 інженерних і наукових працівників, вона працює на більшості сучасних операційних систем, включаючи Linux, Mac OS, Solaris