67600

Связность. Компоненты связности

Лекция

Математика и математический анализ

Компоненты связности Определения. Компонентой связности графа G сильной связности орграфа D наз. Матрицы достижимости и связности Пусть D – матрица смежности ориентированного псевдографа D=VX или псевдографа G=VX где V={v1 vn}. Тогда отношение эквивалентности...

Русский

2014-09-12

135 KB

11 чел.

Лекция 9

Связность. Компоненты связности  

Определения.

Подграфом графа G  называется граф, все вершины и ребра которого содержатся среди вершин и ребер графа G. (Для орграфа то же).

Подграф наз. собственным, если он отличен от самого графа.

Говорят, что вершина w орграфа D (графа G) достижима из верш. v, если либо w=v, либо существует путь (маршрут) из v в w.

Граф (орграф) наз связным (сильно связным), если для любых двух его вершин v, w существует маршрут (путь), соединяющий v и w.

Орграф наз односторонне связным, если для любых двух его вершин по крайней мере одна достижима из другой.

Псевдографом, ассоциированным с ориентированным псевдографом D=(V,X) наз. псевдограф G=(V,X0), в котором X0 получается из X заменой всех упорядоченных пар (v,w) на неупорядоченные {v,w}.

Орграф наз слабо связным, если связным является ассоциированный с ним псевдограф.

Если граф (орграф) не является связным (слабо связным), то он наз. несвязным.

Компонентой связности графа G (сильной связности орграфа D) наз. его связный (сильно связный) подграф, не являющийся собственным подграфом никакого другого связного (сильно связного) подграфа графа G (орграфа D).

Примеры.

Матрицы достижимости и связности

Пусть A(D) – матрица смежности ориентированного псевдографа D=(V,X) (или псевдографа G=(V,X)), где V={v1,…, vn}. Обозначим через Ak=[a(k)ij] k-ю степень матрицы смежности A(D).

Утверждение. Элемент a(k)ij матрицы Ak ориентированного псевдографа D=(V,X) (псевдографа G=(V,X)) равен числу всех путей (маршрутов) длины k из vi в vj.

Д-во

Для k=1 очевидно в силу построения матрицы A(D).

Пусть это справедливо для n=k-1. Т.е. в матрице Ak-1 в i-той строке на l-том месте стоит число, означающее кол-во маршрутов из vi в vl длины k1. Столбец под номером j матрицы A содержит числа, означающие кол-во дуг (ребер) из vl в vj (l-номер строки). Тогда скалярное произведение i-той строки матрицы Ak-1 на j-тый столбец матрицы A равен сумме произведений. Каждое произведение означает кол-во путей из vi в vj, проходящих через vl на предпоследнем шаге. В сумме получается общее кол-во.

Утверждение. Для того, чтобы n-вершинный орграф D с матрицей смежности A=A(D) имел хотя бы один контур, чтобы матрица K=A2+A3+… An имела ненулевые диагональные элементы (следствие предыдущего).

Пусть -отношение достижимости на множестве V всех вершин (неориентированного) графа G. (либо v=w, либо маршрут, соединяющий v и w).

Тогда

  1.  -отношение эквивалентности;
  2.  vw  вершины v,w принадлежат одной компоненте связности;
  3.  для класса эквивалентности V1 псевдограф G1, порожденный множеством V1, является компонентой связности псевдографа G.

Для орграфа.

Пусть 1-отношение достижимости на множестве V всех вершин ориентированного псевдографа D. Пусть 2-отношение двусторонней достижимости на множестве V. (2=11-1). Тогда

  1.  1 - рефлексивно, транзитивно;
  2.  2 – эквивалентность на V;
  3.  v2w  когда вершины v,w  одной компоненте сильной связности;
  4.  для класса эквивалентности V1 ориент. псевдограф D1, порожденный множеством V1, является компонентой связности ор. псевдографа G.

Число компонент сильной связности орграфа D обозначается P(D). (для неор. - P(G).

Определение. Под операцией удаления вершины из графа (орграфа) будем понимать операцию, заключающуюся в удалении некоторой вершины вместе с с инцидентными ей ребрами (дугами).

Определение. Вершина графа, удаление которой увеличивает число компонент связности, называется точкой сочленения.

Пример.

Утверждение. Если D' – орграф, полученный в результате удаления нескольких вершин из орграфа D, то матрица смежности A(D') получается из матрицы смежности A(D) в результате удаления строк и столбцов, соответствующих удаленным вершинам. (Для неор. графа то же самое).

Определение. Матрицей достижимости орграфа D называется квадратная матрица T(D)=[tij] порядка n, элементы которой равны

Определение. Матрицей сильной связности орграфа D называется квадратная матрица S(D)=[sij] порядка n, элементы которой равны

Определение. Матрицей связности графа G называется квадратная матрица S(G)=[sij] порядка n, элементы которой равны

Утверждение. Пусть G=(V,X) – граф, V={v1,…, vn}, A(G) – его матрица смежности. Тогда

S(G)=sign[E+A+A2+A3+… An-1] (E- единичная матрица порядка n).

(Следует из предыдущего).

Утверждение. Пусть D=(V,X) – орграф, V={v1,…, vn}, A(D) – его матрица смежности. Тогда

  1.  T(D)=sign[E+A+A2+A3+… An-1],
  2.  S(D)=T(D)TT(D)  (TT-транспонированная матрица, - поэлементное умножение).

Алгоритм выделения компонент сильной связности.

1. Присваиваем p=1, S1=S(D).

2. Включаем в множество вершин Vp компоненты сильной связности Dp=(Vp,Xp) вершины, соответствующие единицам первой строки матрицы Sp. В качестве матрицы A(Dp) возьмем подматрицу матрицы A(D), состоящую из элементов матрицы A, находящихся на пересечении строк и столбцов, соответствующих вершинам из Vp.

3. Вычеркиваем из Sp строки и столбцы, соответствующие вершинам из Vp. Если не остается ни одной строки (и столбца), то p- кол-во компонент сильной связности. В противном случае обозначим оставшуюся после вычеркивания срок и столбцов матрицу Sp+1, присваиваем p:=p+1 и переходим к п. 2.

Пример.

,

,

,

,

T(D)=sign[E+A+A2+A3+A4]=,

S(D)=TTT=.

Выделение компонент (сильной) связности.

1. p=1,

2. V1={v1, v3, v5},   

D1

3. ,

2'. V2={v2 },   

D2

3'. ,

2''. V3={v4 },

D3


 

А также другие работы, которые могут Вас заинтересовать

1516. Проект одноступенчатого редуктора для электродвигателя марки А100S2У3 28.75 KB
  Номинальные частоты вращения и угловые скорости редуктора. Делительный диаметр червячного колеса. Предварительный Расчет валов редуктора и конструирование червяка и червячного колеса. Конструкционные размеры корпуса редуктора.
1517. Расчет зоны покрытия и абонентской нагрузкидля базовой станции стандарта GSM 77.97 KB
  Расчет зоны покрытия БС с помощью модели Хата. Расчет нагрузки в соте. Вероятность отказа в обслуживании сотой абонента в зависимости от количества каналов.
1518. Базовая структура системы автоматического управления приводным двигателем постоянного тока 111.02 KB
  Выбор электродвигателя. Выбор силового преобразователя. Выбор сглаживающего дросселя. Определение коэффициентов передачи и постоянных времени силовых элементов. Компоновка и расчет статики САУ. Построение функциональной схемы САУ. Расчет статических характеристик САУ. Выбор элементов САУ и расчет параметров обратных связей.
1519. Организация рабочего места оператора персонального компьютера 128.31 KB
  Представить схему расположения рабочих мест, оснащенным персональными компьютерами, для заданного помещения. Требования к освещению рабочего места. Требования к микроклимату на рабочем месте. Оптимальные величины показателей микроклимата на рабочих местах производственных помещений. Время регламентированных перерывов в течение рабочей смены.
1520. Экономика предприятия. Шпаргалка. Основные фонды 178.18 KB
  Понятие, состав и структура основных фондов предприятия. Виды стоимости основных фондов. Методы начисления амортизации основных фондов. Факторы и направления повышения эффективности использования материальных ресурсов. Взаимосвязь объема производства, себестоимости и выручки. (Аналитическое и графическое определение точки безубыточности.)
1521. Проблема человека в конфуцианстве. Человек и природа в чань-буддизме 157 KB
  Место человека в конфуцианстве. Низкий человек и благородный муж. Толкование человеческой природы Мэн-цзы и Сунь-цзы. Современное конфуцианство Чэнь Юланя. Учение о человеке в Чань-буддизме.
1522. Патриархально-патерналистская концепция государства Конфуция 32.92 KB
  Социально-политические представления древневосточных обществ. Конфуцианское решение проблемы. Самая краткая формулировка учения Конфуция. Изначальное значение понятия порядок (ли) как нормы конкретных отношений, действий, прав и обязанностей в эпоху династии Западных Чжоу.
1523. Теория программирования на языке Oracle 164 KB
  Архитектура Oracle. База данных. Физические и логические сегменты. Создание базы данных Oracle. Управляющие файлы. Создание, удаление и перемещение (переименование) управляющих файлов. Файлы данных. Создание, перемещение (переименование) файлов данных. Изменение состояния файлов данных. Использование CPU для нужд Oracle.
1524. Инновационный проект по разработке модели термопластавтомата 196.23 KB
  Характеристика инновационного проекта по разработке модели термопластавтомата на предприятии ООО Имид. Назначение и техническое описание инновационного проекта. Оценка эффективности инновационного проекта. Расчет затрат на электроэнергию по проекту. Анализ показателей эффективности инновационного проекта. Анализ чувствительности проекта и оценка рисков.