67601

Задача поиска маршрутов в графе (путей в орграфе)

Задача

Математика и математический анализ

Исходя из некоторой вершины всегда следовать по тому ребру которое не было пройдено или было пройдено в противоположном направлении. 3 Для всякой вершины отмечать ребро по которому в вершину попали в первый раз 4 Исходя из некоторой вершины идти по первому заходящему в ребру лишь тогда когда нет других...

Русский

2014-09-12

362.5 KB

10 чел.

Лекция №10

Задача поиска маршрутов в графе (путей в орграфе)

Алгоритм Тэрри поиска маршрута в связном графе, соединяющего вершины  и  .

Правила.

1) Идя по произвольному ребру всегда отмечать направление его прохождения.

2) Исходя из некоторой вершины  всегда следовать по тому ребру, которое не было пройдено или было пройдено в противоположном направлении.

3) Для всякой вершины  отмечать ребро по которому в вершину попали в первый раз

4) Исходя из некоторой вершины  идти по первому заходящему в  ребру лишь тогда, когда нет других возможностей.

Замечание: из полученного пути можно выделить простую цепь.

Поиск оптимального пути (маршрута) (т.е пути с наименьшим числом дуг или ребер)

Утверждения:

1) каждый минимальный путь (маршрут) является простой цепью

Доказательство.

Пусть  минимальный путь в орграфе D, не являющийся простой цепью. Тогда  i и j такие, что  и vi=vj. Рассмотрим путь . Его длина меньше, чем , что противоречит предположению.

2) (о минимальности подпути минимального пути). Пусть  - минимальный путь (маршрут) в орграфе D (в графе G). Тогда для  i и j таких, что  путь (маршрут)  тоже является минимальным.

Доказательство. Предположим, что  не является оптимальным, тогда  т.ч. он короче чем . Тогда заменив  на  в  можно найти более короткий, чем  путь  не является минимальным. Пришли к противоречию.

Пусть  орграф - некоторая вершина .

Обозначим - образ вершины ;

- прообраз вершины ;

- образ множества вершин V1 ;

прообраз множества вершин V1.

Для неориентированного графа образ и прообраз совпадают.

Пусть  граф .

Обозначим - образ вершины ;

- образ множества вершин V1.

Пусть  орграф с n2 вершинами и v,w (vw) – заданные вершины из V 

Алгоритм поиска минимального пути из  в  в орграфе D

(алгоритм фронта волны).

1) Помечаем вершину  индексом 0, затем помечаем вершины образу вершины  индексом 1. Обозначаем их FW1 (v). Полагаем k=1.

2) Если  или k=n-1, и одновременно то вершина  не достижима из . Работа алгоритма заканчивается.

В противном случае продолжаем:

3) Если , то переходим к шагу 4.

В противном случае мы нашли минимальный путь из  в  и его длина =k. Последовательность вершин

есть этот минимальный путь. Работа завершается.

4) Помечаем индексом k+1 все непомеченные вершины, которые принадлежат образу множества вершин c индексом k. Множество вершин с индексом k+1 обозначаем . Присваиваем k:=k+1 и переходим к 2).

Замечания

Множество  называется фронтом волны kго уровня.

Вершины  могут быть выделены неоднозначно, что соответствует случаю, если  несколько min путей из  в .

Пример 1. Дана матрица смежности. Найти минимальный путь из v1 в v6.

Исх\вход

0

0

0

1

1

0

1

0

0

1

1

1

1

1

0

1

1

1

0

1

1

0

1

0

1

1

1

1

0

0

1

1

1

1

1

0

0

2

2

1

1

3

,  

Пример 2. Дан орграф.

Задание. Найти минимальный путь из v1 в v6.

Матрица смежности

Исх\вход

0

0

0

1

1

0

1

0

0

0

1

1

1

1

0

1

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

1

3

Расстояния в графе

Пусть - граф (или псевдограф).

Расстоянием между вершинами  наз. min длина пути между ними. .

Расстояние в графе удовл. аксиомам метрики

1) ,

2)  (не орграф)

3)

4)  в связном графе ( в орграфе, если не  пути).

Пример

1

2

3

4

5

6

1

1

1

0

0

21

0

2

0

0

1

0

0

0

3

0

0

0

0

0

1

4

1

1

0

0

0

0

5

0

0

1

1

0

0

6

0

1

0

0

0

0

Из 1

0

1

2

2

1

3

Из 2

0

1

2

Из 3

2

0

1

Из 4

1

1

2

0

2

3

Из 5

2

3

1

1

0

2

Из 6

1

2

0

опр || Пусть  связный граф (или псевдограф).

Величина  - называется диаметром графа G.

Пусть .

Величина  - называется максимальным удалением (эксцентриситетом) в графе G от вершины .

Радиусом графа G наз. величина

Любая верш.  такая, что  наз. центром графа G.

                          

Матрица смежности

0

1

0

0

0

1

0

1

1

0

0

1

0

1

0

0

1

1

0

1

0

0

0

1

0

Матрица расстояний

0

1

2

2

3

1

0

1

1

2

2

1

0

1

2

2

1

1

0

1

3

2

2

1

0

Центры в вершинах 2,3,4

Примеры.

Матрица смежности

1

2

3

4

5

6

1

0

1

0

0

1

0

2

1

0

0

1

0

1

3

0

0

0

0

1

1

4

0

1

0

0

1

0

5

1

0

1

1

0

0

6

0

1

1

0

0

0

Матрица расстояний

1

2

3

4

5

6

1

0

1

2

2

1

2

2

1

0

2

1

2

1

3

2

2

0

2

1

1

4

2

1

2

0

1

2

5

1

2

1

1

0

2

6

2

1

1

2

2

0

, центр - все вершины


 

А также другие работы, которые могут Вас заинтересовать

66619. Виды АРУ приемных устройств РЛС. Работа АРУ с обратной связью 371.16 KB
  Мощность отраженного радиолокационного сигнала принимаемого от отражающего объекта, изменяется прямопропорционально четвертой степени дальности или удвоенного времени распространения энергии зондирующего радиолокационного сигнала до этого объекта.
66620. Дирижерская интерпретация музыкального произведения (генезис и эволюция) 196.5 KB
  В истории научной мысли дирижирование, как деятельность и вид музыкального исполнительства, является своеобразным «оплотом» творческого лагеря, правила и особенности существования в котором, казалось бы, не подвластны объяснению. Действительно, количество парадоксальных и взаимоисключающих явлений...
66622. ТЕНДЕНЦІЇ РОЗВИТКУ КОМП’ЮТЕРНИХ ТЕХНОЛОГІЙ В НАВЧАННІ І ВИХОВАННІ 56.73 KB
  Основною метою державної політики в галузі освіти є створення умов для розвитку особистості й творчої самореалізації кожного громадянина України, оновлення змісту освіти та організації навчально-виховного процесу відповідно до демократичних цінностей...
66626. Модели роста народонаселения 3.26 MB
  Человечество, как биологический вид, подчиняется биологическим законам роста, в который включены общие для живых организмов процессы рождения и гибели. Долгое время рост и развитие человечества рассматривались как цепь исторических событий, различных для разных стран, а количественное описание казалось малоинформативным.
66627. Создание объединенной IP-сети со статической маршрутизацией 1.28 MB
  Главной задачей стека TCP/IP является объединение в сеть пакетных подсетей через шлюзы. Каждая сеть работает по своим собственным законам, однако предполагается, что шлюз может принять пакет из другой сети и доставить его по указанному адресу.