67615

Накопители на жестких магнитных дисках. Структура накопителя на жестких магнитных дисках

Лекция

Информатика, кибернетика и программирование

Структура накопителя на жестких магнитных дисках С конструктивной точки зрения НЖМД схожи с НГМД. Однако НЖМД содержат большее число электромеханических узлов и механических деталей изолированных в герметизированном корпусе и пакет магнитных дисков. Структура дискового пакета...

Русский

2014-09-12

146 KB

4 чел.

Накопители на жестких магнитных дисках

1. Структура накопителя на жестких магнитных дисках

С конструктивной точки зрения НЖМД схожи с НГМД. Однако НЖМД содержат большее число электромеханических узлов и механических деталей, изолированных в герметизированном корпусе, и пакет магнитных дисков. Несколько дисков, объединенных в пакеты, жестко закрепляются на общей оси (рис. 14.1). Магнитные головки, объединенные в блок, приводятся в движение двигателем.

Рис. 14.1. Структура дискового пакета НЖМД

Запись-считывание в НЖМД осуществляется бесконтактным способом, хотя в состоянии покоя МГ находятся на поверхности магнитного покрытия.

Жесткий магнитный диск - это круглая металлическая пластина толщиной 1,5..2мм, покрытая ферромагнитным слоем и специальным защитным слоем. Для записи и чтения используются обе поверхности диска. Поверхность диска, как и для НГМД, разбита на дорожки. Дорожки с одним и тем же радиусом на всех дисках пакета образуют цилиндр. Цилиндр определяет положение всех МГ блока при записи или считывании на той или иной дорожке. Цилиндрам присваиваются номера соответствующих дорожек. Обычно один сектор на дорожке вмещает несколько сотен байт. Полный адрес сектора в дисковом пакете состоит из трех частей: номера цилиндра, номера МГ и номера сектора на дорожке. Обычно используют пакеты с 4, 5, 8 и более дисками, где на каждую поверхность диска приходится по одной МГ.

2. Метод записи данных на жесткий магнитный диск

Для записи на ЖМД используются методы ЧМ, модифицированной частотной модуляции (МЧМ) и RLL-метод, при котором каждый байт данных преобразуется в 16-битовый код.

При методе МЧМ плотность записи данных возрастает вдвое по сравнению с методом ЧМ. Для этого метода (рис. 14.2), если записываемый бит данных является единицей, то стоящий перед ним бит тактового импульса не записывается. Если записывается «0», а предыдущий бит был «1», то синхросигнал также не записывается, как и бит данных. Но если перед «0» стоит бит «0», то синхросигнал записывается.

3. Формат записи информации на жестком магнитном диске

В НЖМД обычно используются форматы данных с фиксированным числом секторов на дорожке (17, 34 или 52) и с объемом данных в одном секторе 512 или 1024 байта. Секторы маркируются магнитным маркером.

Конкретный формат данных определяется внутренней программной конфигурацией ПЭВМ и техническими характеристиками адаптера накопителя. Структура формата (рис. 14.3) подобна структуре, применяемой в НГМД.

Начало каждого сектора обозначается адресным маркером. В начале идентификатора и поля данных записываются байты синхронизации, служащие для синхронизации схемы выделения данных адаптера НЖМД. Идентификатор сектора содержит адрес диска в пакете, представленный кодами номеров цилиндра, головки и сектора. В отличие от НГМД в НЖМД в идентификатор дополнительно вводят байты сравнения и флага. Байт сравнения представляет одинаковое для каждого сектора число, с помощью которого осуществляется правильность считывания идентификатора. Байт флага содержит флаг - указатель состояния дорожки (основная или запасная, исправная или дефектная).

 

Контрольные байты записываются в поле идентификатора один раз при записи идентификатора сектора, а в поле данных - каждый раз при каждой новой записи данных. Контрольные байты в НЖМД предназначены не только для определения, но и для коррекции ошибок считывания. Наиболее часто используются полиномные корректирующие коды; использование конкретных кодов зависит от схемной реализации адаптера.

Перед использованием НЖМД производится его начальное форматирование - процедура, выполняемая под управлением специальной программы, при работе которой на дисковый пакет записывается служебная информация и проверяется пригодность полей данных.

Пять различных интервалов в НЖМД используются для синхронизации электронных процессов чтения-записи и управления работы электромеханических узлов накопителя.

В результате начального форматирования определяется расположение секторов, и устанавливаются их логические номера. Поскольку скорость вращения диска очень большая, для обеспечения минимального числа оборотов диска при обращении к последовательным секторам, секторы с последовательными номерами размещаются через N физических секторов друг от друга (рис. 14.4).

Кратность расположения секторов задается при форматировании диска. Коэффициенты чередования бывают 6:1, 3:1, и 1:1. Новейшие модели НЖМД используют коэффициенты 1:1, а их контроллеры считывают с диска за одно его обращение информацию с целой дорожки и затем хранят ее в буферной памяти. При запросе из буферной памяти передается информация уже из требуемых секторов.

Каждая дорожка диска разделяется на одинаковое число секторов, поэтому сектора на дорожках, которые находятся ближе к нулевой дорожке, имеют меньший размер. Для записи таких секторов используются магнитные поля большей интенсивности (компенсация записи). Число поверхностей диска (головок), число цилиндров (дорожек) и точка, с которой начинается компенсация записи, являются параметрами для настройки контроллера НЖМД.

Среднее время доступа к информации на НЖМД составляет

tср=tn+0,5/F+tобм ,                                    (14.1)

где tn - среднее время позиционирования; F - скорость вращения диска; tобм - время обмена. Время обмена зависит от технических средств контроллера и типа его интерфейса, наличия встроенное буферной кэш-памяти, алгоритма кодирования дисковых данных и коэффициента чередования.

4. Адаптер накопителей на жестких магнитных дисках

В НЖМД используются два вида электронных схем: один для управления магнитными головками, двигателем и дисками; и другой для управления данными. Конструктивно электронное оборудование адаптера НЖМД, также как и адаптера НГМД, может быть размещено или на системной плате ПЭВМ, или на плате модуля расширения совместно с адаптером НГМД.

Типичный адаптер НЖМД выполняет следующие основные функции по командам ЦП: поддерживает требуемый формат данных, размещаемых на дисках; передает данные в режиме ПДП или программного ввода-вывода; осуществляет поиск и проверку требуемых цилиндров; производит переключение головок; обнаруживает и корректирует ошибки в считанных данных; организует последовательность считываемых секторов в соответствии с коэффициентом чередования; генерирует прерывание. Если адаптер использует RLL-метод кодирования, то требуется специальный накопитель, рассчитанный на данный способ кодирования.

На рис. 14.5 приведена обобщенная структура адаптера НЖМД.

Программы управления микропроцессором записываются в ПЗУ. Различные программы предназначены для различных операций обмена. Адаптер НЖМД имеет собственную локальную оперативную память, которая разделяется на рабочую область для микропроцессора и буфер данных для хранения одного сектора. Регистры ввода-вывода предназначены для ввода-вывода данных, сброса и выбора адаптера, записи состояния и типа накопителя, разрешения ПДП и прерывания. Контроллер ПДП управляет обменом данными между адаптером и НЖМД, между адаптером и ОЗУ ПЭВМ.

Команды ЦП подаются на адаптер в режиме программного ввода-вывода в виде блока, включающего код операции, адрес сектора, номера байтов обмена, номер накопителя и др.

Основными командами являются команды чтения, записи, форматирования и позиционирования. Для проверки состояния НЖМД и адаптера служат диагностические команды. Командный блок записывается в локальную память адаптера.

Данные с системной шины при записи в НЖМД поступают в регистры ввода-вывода побайтно и преобразуются в вид для записи в секторный буфер. Под управлением контроллера ПДП или программного режима ввода-вывода данные поступают на сериализатор, преобразующий байты в последовательный код. Кодер кодирует данные по методу МЧМ. Одновременно с преобразованием данные поступают на блок контроля и коррекции. Затем данные и контрольные байты записываются в НЖМД.

При чтении данных сепаратор отделяет синхроимпульсы, данные декодируются и преобразуются десериализатором в параллельный код. Под управлением контроллера ПДП байты данных помещаются в ОЗУ и через регистры ввода-вывода выдаются на системную шину. Адаптер выдает ЦП параметры выполнения команды.

Недостатком такой структуры адаптера является то, что параметры диска записаны в его ПЗУ, поэтому адаптер может работать только с определенной моделью диска. В других конструкциях НЖМД дисковые параметры хранятся на самом диске и загружаются в адаптер при работе.

Рис. 14.5. Обобщенная структура адаптера НЖМД

Рис. 14.4. Расположение секторов в НЖМД

Рис. 14.2. Диаграмма магнитной записи способом модифицированной частотной модуляции: с – синхросигнал

0

1

0

0

1

1

0

1

1

с

с

с

с

с

с

с

с

с

с

Считываемый сигнал

Магнитная поверхность

IW

Тактовые импульсы

t

t

l

t

0

1

0

0

1

0

1

1

1


 

А также другие работы, которые могут Вас заинтересовать

34352. Технология производства портландцемента по сухому и мокрому способу 32 KB
  В зоне испарения до 200 С испаряется свободная вода происходит высушивание сырьевой смеси подсушенный материал комкуется. Дальнейшее высушивание смеси выгорание органических примесей начало дегидратации глины удаления химически связанной воды разрушение глинистых минералов происходит в зоне подогрева 200. В третьей зоне зоне декарбонизации 700. Термическая диссоциация СаСОз эндотермический процесс поэтому потребление теплоты в третьей зоне печи наибольшее.
34353. Технико-экономические показатели производства цемента 21 KB
  Техникоэкономические показатели производства цемента. Себестоимость цемента оказывает реш. расход цемента достиг. Себестоимость цемента зависит от вида исходного сырья топлива ТП и объема производства.
34354. Гипсовые вяжущие материалы, их производство и назначение 27 KB
  Сырьем для производства гипсовых вяжущих служат природный гипсовый камень CSO42H2O и природный ангидрит CSO4 а также отходы химической промышленности содержащие сернокислый кальций фосфогипс при переработке природных фосфатов в суперфосфат борогипс и др. Низкообжиговые гипсовые вяжущие вещества получают тепловой обработкой двуводного гипса CSO42H2O при низких температурах 110.160 С с частичной его дегидратацией и переводом в полуводный гипс CSO405H2O. При этом двуводный гипс дегидратируется по реакции: CSO42H2O = =...
34355. Строительная известь. Производство, свойства, назначение 22.5 KB
  Строительная известь. известью называется вяжущее вещество получаемое в резте умеренного обжига и последующего помола кальциевомагниевых карбонатных горных пород известняка мела доломита с содержанием не более 6 глинистых примесей. Известь получают за счет разложения известняка: CCO3=CO CO2; MgCO3=MgOCO2. Полученная при обжиге карбонатных пород негашеная комовая известь затем поступает на помол или гашение.
34356. Безобжиговые изделия на основе вяжущих материалов 21.5 KB
  Безобжиговые изделия на основе вяжущих материалов. изделий: 1Силикатные материалы и изделия получаемые на основе извести: силикатный кирпич; крупноразмерные плотные силикатные изделия: блоки внутренних несущих стен зданий лестничные ступени балки и др. 2гипсовые изделия получаемые на основе строительного гипса: панели и плиты перегородочные листы обшивочные изделия для перекрытий архитектурные детали и др. 3 матлы и изделия на основе магнезиальных вяжущих вв: теплоизоляционный фибролит для утепления стен; фибролитовая фанера; пено...
34357. Композиционные материалы, область применения и экономическая оценка 21.5 KB
  Композиционные материалы область применения и экономическая оценка. Для изготовления деталей машин приборов используют консрукционные матлы и матлы спец. Кострукционные матлы подразделяются на металлические неметаллич. Композиционные материалы – это матлы образованные объемным сочетанием химически разнородных компонентов с четкой границей разделения между ними.
34358. Особенности и основные направления научно-технического процесса и роль современных технологий 23 KB
  Особенности и основные направления научнотехнического процесса и роль современных технологий. 3ий этап информационных технологий . Особенности современного этапа: высокий темп развития наукоемких отраслей; модернизация отраслей; разработка и внедрения сберегающих технологий; малобезотходное производство; развитие компьютерных технологий; замена Тж на Тп . технологий.
34359. Программное управление технологическим процессом 26 KB
  Программное управление технологическим процессом Для современного производства характерна его компьютеризация или электронная автоматизация. Программное управление управление режимом работы объекта по заранее заданному алгоритму программе. Программное управление технологическим оборудованием и процессами охватывает управление движением машин механизмов транспортных средств и изменением параметров технологического процесса. К оборудованию с программным управлением относят: автоматические линии АЛ; станки с числовым программным...
34360. Промышленные роботы и их использование в технологии. Классификация, технико-экономическая оценка 24 KB
  Промышленные роботы и их использование в технологии. Роботы используются для автоматизации многих работ. Классификация роботов по характеру выполняемых операций технологические роботы – выполняют основные операции технол. вспомогательные подъёмнотранспортные роботы – выполняют действия типа взятьперенестиположить.