67618

Устройства и системы ввода-вывода текстовой и графической информации. Принцип кодирования текстовой информации. Кодирование текстовой информации в ЭВМ

Лекция

Информатика, кибернетика и программирование

Текстовая информация представляется последовательностью алфавитно-цифровых символов каждый из которых определённым образом кодируется. Существуют четыре основных принципа кодирования символов. 1 где S множество всех символов используемых для кодирования текста...

Русский

2014-09-12

147 KB

1 чел.

Устройства и системы ввода-вывода

текстовой и графической информации

Принцип кодирования текстовой информации

1. Кодирование текстовой информации в ЭВМ

Текстовая информация представляется последовательностью алфавитно-цифровых символов, каждый из которых определённым образом кодируется. Существуют четыре основных принципа кодирования символов.

1. Символы кодируются в виде последовательности двоичных цифр. Количество разрядов на один символ определяется по формуле

,                                  (17.1)

где S - множество всех символов, используемых для кодирования текста; HХ(S) - энтропия по Хартли (мера неопределённости). Эта величина характеризует количество информации в каком-либо сообщении.

;                    (17.2)

.

Эта энтропия обладает свойством адитивности, т.е. . Например, код символа складывается из буквенного обозначения и цифрового X={A, B, C, D}, Y={1, 2, 3, 4, 5, 6, 7, …, 16}; тогда

,  .

Большинство кодировок используют один байт для кодирования символов.

2. Символы, относящиеся к одной группе по каким-либо признакам желательно кодировать в виде односвязного множества в одномерном пространстве кодов (рис. 17.1).

Рис. 17.1. Одномерное пространство кодов символов

3. Коды символов должны отражать порядок следования букв в алфавите.

4. Желательно, чтобы преобразование строчных букв в прописные и обратно сводилось к прибавлению или вычитанию некоторой константы или к гашению/записи некоторых бит.

Принцип 2 и 4 не всегда соблюдаются.

Для кодирования символов в качестве внутреннего кода ЭВМ наиболее часто используется двоичный код обработки информации (ДКОИ), построенный на основе международного кода EBCDIC.

Наиболее часто символы в тексте в пределах информационных блоков встречаются с различной вероятностью, что позволяет сократить затраты разрядов на кодирование. Для этого количество информации рассчитывается при помощи энтропии по Шеннону HS(X), и в общем случае HS(S)< HX(S).

,     (17.3)

где N – мощность множества X(N=|X|); Pi – вероятность поступления событий (встречаемость символов в тексте); .

Если события равновероятны, то Pi = 1/N =>

.   (17.4)

Свойства энтропии по Шеннону:

а) она всегда положительна;

б) она максимальна, т.е. равна энтропии по Хартли, когда события равновероятны;

в) для независимых событий из множеств X и Y, энтропия произведения X и Y равна сумме отдельных энтропий

HS(XY)=HS(X)+ HS(Y).

Энтропия по Шеннону и энтропия по Хартли также используются для теоретического анализа каналов передачи информации.

Разобьем множество символов S на m подмножеств (), в которых символы встречаются с равной вероятностью.

,     (17.5)

где рi – вероятность встретить символ, принадлежащий подмножеству Si.

Количество бит для кодирования одного символа определяется как

.        (17.6)

Экономия в разрядах на один символ проявляется, когда n1<nbit, тогда для кодирования используют n1 разряд, а для переключения с одной группы символов на другие используют специальные коды, которые включаются в каждую группу. Таким кодом является международный телеграфный код (МТК-2, МТК-5), который используется в системах связи и телеобработки.

Если условие

  ,                                 (12.7)

где <N> - средняя длина информационного блока, содержащего символы из одной группы; выполняется, то кодирование считается эффективным.

2. Ручной ввод текстовой информации с клавиатуры

Клавиатуры могут характеризоваться:

1) эксплуатационными характеристиками:

а) количество типов клавиш;

б) количество клавиш каждого типа;

в) расположение клавиш. По расположению клавиш наибольшее распространение получила клавиатура QWERTY, однако, возможны и другие варианты расположения символов клавиатуры (Дворака и Делея);

2) механическими характеристиками, основной из которых является функция упругости клавиш.

По способу обнаружения нажатия клавиш выделяют три типа клавиатур:

1) с гальваническим контактом или с открытым (не герметичным контактом). Для них характерна низкая стоимость и малое время наработки на отказ;

2) с магнитным принципом обнаружения (на основе магниточувствительных и проводниковых структур). Для них характерна большая стоимость, но очень высокая надёжность;

3) с ёмкостным принципом обнаружения нажатия. Для них характерна высокая износостойкость, низкая надёжность и сложность настройки.

Принцип кодирования клавиш клавиатуры не зависит от кодирования символов. В системное устройство ПЭВМ посылается не код символа, которому соответствует данная клавиша, а позиционный код клавиши. Переход к коду символа осуществляется специальной схемой управления клавиатурой, которую можно перепрограммировать.

Клавиатура включает в себя совокупность ключей клавиш и схемы управления для формирования кода при замыкании ключа, исключения неоднозначности кодирования из-за “дребезга” контактов и выполнения других управляющих функций. Клавиатура проектируется как конечный автомат (рис. 17.2)

Дешифратор последовательно опрашивает состояние ключей, расположенных с столбцах X матрицы клавиатуры. Если какая-либо клавиша нажата, то сигнал через замкнутый контакт поступает на соответствующую горизонтальную шину Y и через селектор (регистр) поступает на вход ПЛМ. Сигналы с дешифратора и селектора образуют адресный вход ПЛМ, в ячейках которой записаны коды символов (их младшие разряды). Код символа записывается в выходной регистр. Старшие разряды кода определяются содержимым специального регистра, изменяющего своё значение только при нажатии клавиши изменения регистров (Shift, Alt и др.).

Проблема “дребезгов” клавиатуры решается использованием вместо ПЛМ микропроцессора. Вертикальные и горизонтальные шины матрицы контактов подключаются, соответственно, к портам вывода и ввода (Пвыв) и (Пвв), для передачи в ЭВМ сформированного кода символа используется второй порт вывода микропроцессора (см. рис. 17.3).

Для устранения “дребезгов” используется накопление веса нажатой клавиши за несколько циклов опроса, образующих период опроса. Если в период опроса координаты клавиши не совпали, то инициируется сброс счётчика веса и начинается новый период опроса.


 

А также другие работы, которые могут Вас заинтересовать

22603. Political System of Federal Republic Germany 2.03 MB
  0 – December 6 2004 CONTENTS Introduction I. December 2004 06:20:44 Bundesland. December 2004 06:20:45 Candidate. December 2004 06:20:45 City.
22605. Психологические особенности внедрения систем электронного документооборота 267 KB
  Рассмотреть внедрение системы электронного документооборота как проект, рассмотреть технические особенности и сложности внедрения системы электронного документооборота, рассмотреть психологические особенности внедрения системы электронного документооборота, рассмотреть существующие психологические типы сотрудников
22606. Реляційне числення. Мова “Альфа” 58.5 KB
  RANGE ОПД X GET WП.КД = Д3 RANGE ОПД X – оператор декларації ОПД – тип X – змінна. Перший варіант: RANGE Д X GET WОПД.колір = червоний RANGE ОПД Y GET W2П.
22608. Накриття множин залежності 65.5 KB
  Х0 = Х Х1 = Х0 {атрибути які можуть бути отримані з Х0 за один крок} . Хi1 = Хi  { атрибути які можуть бути отримані з Х0 за і кроків} Якщо Хк = Хк1 = Х то процес обривається достроково якщо на деякому кроці Хк зрівнюється з усією множиною атрибутів. Приклад: ABC CA BCD ACDB DEG BEC CGBD CEAG Побудуємо замикання 2х атрибутів: BD BD = {B D E G} = X1 X2 = {B D E G C} X3 = {B D E G C A} – всі атрибути побудовані В = {B}  B не може бути квазіключем D = {DEG} Мінімізуємо дану структуру: Перевірка кожної...
22609. Логічне проектування баз даних 77 KB
  A6 Атрибути А1 і А3 не входять у структуру функціональної залежності. Визначення функціональної повної залежності: М2 функціонально повно залежить від М1 якщо R.M1 Зобразимо це графічно: Реляція знаходиться в 3 НФП якщо вона в 2 НФП і не має транзитивної залежності атрибутів відносно кожного квазіключа. Реляція в 3 НФП якщо вона не має має транзитивної залежності атрибутів відносно кожного квазіключа.
22610. Вимірювання електрорушійної сили ( ЕРС ) та напруг компенсаційним методом 54 KB
  Ознайомитись з компенсаційним методом вимірювання ЕРС та напруг. Компенсаційний метод вимірювання. Цей недолік усувається якщо вимірювання здійснювати методом порівняння з мірою коли невідома величина порівнюється з мірою а на шкалі відтворюються лише відносні значення.
22611. ВИЗНАЧЕННЯ ПИТОМОГО ОПОРУ ПРОВІДНИКА 37.5 KB
  Змінюючи струм від мінімального до максимального значень зніміть вольтамперну характеристику опору провідника. Визначте абсолютну похибку  будьякого окремо взятого вимірювання за формулою середнього квадратичного відхилення питомого опору S та порівняйте її з похибкою визначеною за методом НК. Дайте відповідь на запитання: Чи підвищується точність визначення питомого опору при багаторазових вимірюваннях 6.