67698

ИЗУЧЕНИЕ КИНЕТИКИ ЭЛЕКТРОДНЫХ ПРОЦЕССОВ ПРИ ЗАЩИТЕ СТАЛИ ФОСФАТНЫМИ ПЛЁНКАМИ

Курсовая

Химия и фармакология

Причиной возникновения и протекания процессов коррозии является термодинамическая неустойчивость материалов к определенным компонентам, находящихся в окружающей их среде. Результатом коррозии являются продукты коррозии (например, ржавчина), испорченное оборудование, разрушение конструкций.

Русский

2014-09-13

127.09 KB

3 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

БАЛТИЙСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ИМЕНИ ИММАНУИЛА КАНТА

КУРСОВАЯ РАБОТА

«ИЗУЧЕНИЕ КИНЕТИКИ ЭЛЕКТРОДНЫХ ПРОЦЕССОВ

ПРИ ЗАЩИТЕ СТАЛИ ФОСФАТНЫМИ ПЛЁНКАМИ»

Выполнил: Валентин Викторович Гурченко

Научный руководитель: Людмила Константиновна Ягунова

Калининград © MMXII

ОГЛАВЛЕНИЕ

1. Введение          стр. 2

2. Электрохимическая коррозия      стр. 4

2.1. Механизм электрохимической коррозии   стр. 4

3. Ингибиторы коррозии       стр. 10

3.1. Классификация ингибиторов коррозии   стр. 10

3.2. Ингибиторы нейтральных сред     стр. 12

3.2.1. Нитрит натрия      стр. 13

3.2.2. Фосфаты       стр. 13

3.2.3. Хроматы       стр. 14

3.3. Ингибиторы атмосферной коррозии    стр. 14

3.3.1. Контактные      стр. 15

3.3.2. Летучие       стр. 15

3.3.3. Применение      стр. 16

3.4. Ингибиторы кислотной коррозии    стр. 17

3.5. Анодные ингибиторы коррозии    стр. 18

3.6. Катодные ингибиторы коррозии    стр. 18

3.7. Смешанные ингибиторы коррозии    стр. 19

4. Фосфатирование         стр. 20

4.1. Фосфатное покрытие      стр. 20

4.1.1. Толщина и структура фосфатного покрытия стр. 20

4.1.2. Цвет фосфатного покрытия    стр. 21

4.1.3. Свойства фосфатного покрытия   стр. 22

4.2. Суть процесса фосфатирования    стр. 23

4.2.1. Фосфатирование чёрных металлов   стр. 24

4.2.2. Холодное фосфатирование    стр. 24

4.2.3. Нормальное фосфатирование    стр. 25

4.2.4. Ускоренное фосфатирование    стр. 26

4.2.5. Электрохимическое фосфатирование  стр. 28

4.2.6. Фосфатирование цветных металлов  стр. 29

4.3. Улучшение защитных свойств фосфатных плёнок стр. 30

5. Список использованной литературы     стр. 31

  1.  ВВЕДЕНИЕ

Коррозия - это самопроизвольное разрушение металлов под воздействием химического или физико-химического влияния  окружающей  среды.  В широком понимании, коррозии подвергаются не только металлы, но и любые материалы, будь то бетон, пластмасса, резина или керамика.

Коррозия протекает в самых разных средах, но в основном, это газообразные и жидкостные (грунт, вода, окружающая атмосфера и т.д.).

Термин «коррозия» походит от латинского слова «corrodere», что означает «разъедать» что-либо.

Причиной возникновения и протекания процессов коррозии является термодинамическая неустойчивость материалов к определенным компонентам, находящихся в окружающей их среде. Результатом коррозии являются продукты коррозии (например, ржавчина), испорченное оборудование, разрушение конструкций.

Ежегодно коррозия наносит огромнейший ущерб народному хозяйству каждой страны. В промышленно развитых странах убытки от коррозии за год  составляют в среднем  около 3 - 5% от внутреннего валового продукта. А потери металла  достигают 20%. Ущерб от коррозии складывается не только от стоимости материалов, но и от затрат на изготовление пришедших в негодность  конструкций, оборудования и различных изделий.

Коррозия наносит как прямые, так и косвенные убытки. К косвенным относятся убытки, связанные с отказом оборудования, пришедшего в негодность из-за коррозионных процессов, его простоя, замены или ремонта, порчей продукции других производств вследствие загрязнения её продуктами коррозии, высокими допусками на коррозию, стоимость дополнительно потраченной электроэнергии, воды, материалов и др. К прямым  - стоимость испорченных коррозией трубопроводов, оборудования, машин и др.

Коррозию по механизму протекания принято разделять на химическую и электрохимическую. Более распространенный - второй вид.

Наука о коррозии и защите металлов изучает особенности и механизмы протекания коррозионных процессов в различных средах. Задачей науки о коррозии является не только изучение, но и разработка методов защиты различных материалов от коррозии.

Наука о коррозии подразумевает не только знание всех закономерностей протекания процессов коррозии. Нужно еще и хорошо знать  свойства металлов, различных материалов. При изучении коррозии металлов и методов защиты от неё, научной базой является физическая химия и металловедение.

Важно знать, что коррозия – это многостадийный сложный процесс, который необходимо изучать целостно. Только изучив саму суть коррозионного процесса, можно приступать к изучению и разработке методов защиты.

Коррозия есть везде, где обрабатываются и эксплуатируются металлические изделия, конструкции. С коррозией нужно бороться! Лучше её предотвращать, чем потом ликвидировать!

  1.  ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ

Электрохимическая коррозия - самый распространенный вид коррозии.  Электрохимическая коррозия возникает при контакте металла с окружающей электролитически проводящей средой. При этом  восстановление окислительного компонента коррозионной среды протекает не одновременно с ионизацией атомов металла и от электродного потенциала металла зависят их скорости. Первопричиной электрохимической коррозии является термодинамическая неустойчивость металлов в окружающих их средах. Ржавление трубопровода, обивки днища морского суда, различных металлоконструкций в атмосфере - это, и многое другое, примеры электрохимической коррозии.

К электрохимической коррозии относятся такие виды местных разрушений, как питтинги, межкристаллитная коррозия, щелевая.  Кроме того процессы электрохимической коррозии происходят в грунте, атмосфере, море.

2. 1. МЕХАНИЗМ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ

Механизм электрохимической коррозии может протекать по двум вариантам:

1) Гомогенный механизм электрохимической коррозии:

  1.  поверхностный слой мет. рассматривается как гомогенный и однородный;
  2.  причиной растворения металла является термодинамическая возможность протекания катодного или же анодного актов;
  3.   К  и  А участки мигрируют по поверхности во времени;
  4.  скорость протекания электрохимической коррозии зависит от кинетического фактора (времени);
  5.  однородную поверхность можно рассматривать как предельный случай, который может быть реализован и в жидких металлах.

2) Гетерогенный механизм электрохимической коррозии:

  1.  у твердых металлов поверхность негомогенная, т.к. разные атомы занимают в сплаве различные положения в кристаллической решетке; 
  2.  гетерогенность наблюдается при наличии в сплаве инородных включений.

Электрохимическая коррозия имеет некоторые особенности: делится на два одновременно протекающих процесса (катодный и анодный), которые кинетически зависимы друг от друга; на некоторых участках поверхности электрохимическая коррозия может принять локальный характер; растворение основного мет. происходит именно на анодах.

Поверхность любого металла состоит из множества короткозамкнутых через сам металл микроэлектродов. Контактируя с коррозионной средой образующиеся гальванические элементы способствуют электрохимическому его разрушению (рисунок 1).

Рисунок 1.

Схема электрохимической коррозии.

Причины возникновения  местных гальванических элементов могут быть самые разные:

1)  неоднородность сплава

  1.  - неоднородность мет. фазы, обусловленная неоднородностью сплава и наличием микро-  и макровключений;
  2.  - неравномерность  окисных пленок на поверхности за счет наличия макро-  и микропор, а также неравномерного образования вторичных продуктов коррозии;
  3.  - наличие на поверхности границ зерен кристаллов, выхода дислокации на поверхность, анизотропность кристаллов.

2)  неоднородность среды

  1.   область с ограниченным доступом окислителя будет анодом по отношению к области со свободным доступом, что ускоряет электрохимическую коррозию.

3)  неоднородность физических условий

  1.  облучение (облученный участок - анод);
  2.  воздействие внешних токов (место входа блуждающего тока - катод, место выхода - анод);
  3.  температура (по отношению к холодным участкам, нагретые являются анодами) и т. д.

При работе гальванического элемента одновременно протекает два электродных процесса:

1)  Анодный - ионы металла переходят в раствор.

Fe0 → Fe2+ + 2e-

Происходит реакция окисления.

2) Катодный - избыточные электроны ассимилируются  молекулами или атомами электролита, которые при этом восстанавливаются.  На катоде проходит реакция восстановления.

O2 + 2H2O + 4e- → 4OH- (кислородная деполяризация в нейтральных, щелочных средах)

O2 + 4H+ + 4e- → 2H2O (кислородная деполяризация в кислых средах)

2H+ + 2e- → H2 (при водородной деполяризации).

Торможение анодного процесса приводит к торможению и катодного. Коррозия металла происходит именно на аноде.

При соприкосновении двух электропроводящих фаз (например,   мет. - среда), когда одна из них заряжена положительно, а другая отрицательно,  между ними возникает разность потенциала. Это явление связано с возникновением двойного электрического слоя (ДЭС). Заряженные частицы располагаются  несимметрично на границе раздела фаз.

Скачек потенциалов в процессе электрохимической коррозии может происходить из-за двух причин:

1) При достаточно большой энергии гидратации, ионы металла могут отрываться и переходить в раствор, оставляя на поверхности эквивалентное число электронов, которые определяют её отрицательный заряд. Отрицательно заряженная поверхность притягивает к себе катионы металла из раствора. Так на границе раздела фаз возникает двойной электрический слой.

2) На поверхности металла разряжаются катионы  электролита. Это приводит к тому, что поверхность металла приобретает положительный заряд, который с анионами раствора  образует двойной электрический слой.

Иногда возникает ситуация, когда поверхность не заряжена и, соответственно, отсутствует ЭДС. Потенциал, при котором это явление наблюдается называется потенциалом нулевого заряда (φN). У каждого металла потенциал нулевого заряда свой.

Величина электродных потенциалов оказывает очень большое влияние на характер коррозионного процесса.

Скачок потенциала между двух фаз не может быть измерен, но при помощи компенсационного метода можно измерить электродвижущую силу элемента (ЭДС), который состоит из электрода сравнения (его потенциал условно принят за ноль) и исследуемого электрода. В качестве электрода сравнения берется стандартный водородный электрод. ЭДС гальванического элемента (стандартный водородный электрод и исследуемый элемент) называют электродным потенциалом. Электродами сравнения могут также выступать хлорсеребряный, каломельный, насыщенный медно-сульфатный.

Международной конвенцией в Стокгольме 1953г.  решено при записях электрод сравнения всегда ставить слева. При этом ЭДС рассчитывать, как разность потенциалов правого и левого электродов:

E = EпEл

Если положительный заряд внутри системы движется слева направо - ЭДС элемента считается положительной, при этом:

Emax = -(ΔGT) / mnF,

где F - число Фарадея.

Если положительные заряды будут двигаться в противоположном направлении, то уравнение будет иметь вид:

Emax = +(ΔGT) / mnF.

При коррозии в электролитах самыми распространенными и значимыми являются адсорбционные (адсорбция  катионов или анионов на границе раздела фаз) и электродные потенциалы (переход катионов из металла в электролит или наоборот).

Электродный потенциал, при котором металл находится в состоянии равновесия с собственными ионами, называется равновесный (обратимый). Он  зависит от природы металлической фазы,  растворителя, температуры электролита, активности ионов мет.

Равновесный потенциал подчиняется уравнению Нернста:

E = Eο + (RT / nF) LnαMen+,

где Eο -  стандартный потенциал металла; R - молярная газовая постоянная; n - степень окисления иона металла; Т - температура; F - число Фарадея; αMen+ - активность ионов металла. При установленном равновесном потенциале электрохимическая коррозия не наблюдается.

Если по электроду проходит электрический ток - равновесное состояние его нарушается.  Потенциал электрода изменяется в зависимости от направления и силы тока. Изменение разности потенциал, приводящее к уменьшению силы тока,  принято называть поляризацией.  Уменьшение поляризуемости электродов  называют деполяризацией. Скорость электрохимической коррозии тем меньше, чем больше поляризация. Поляризация характеризуется величиной перенапряжения.

Поляризация бывает трех типов:

1) электрохимическая (при замедлении анодного или катодного процессов);

2) концентрационная (наблюдается, когда скорость подхода деполяризатора к поверхности и отвода продуктов коррозии мала);

3) фазовая (связана с образованием на поверхности новой фазы).

Электрохимическая коррозия наблюдается также при контакте двух разнородных металлов. В электролите они образуют гальванопару. Более электроотрицательный из них будет анодом. Анод в процессе будет постепенно растворяться. При этом идет замедление или даже полное прекращение электрохимической коррозии на катоде (более электроположительном). Например, при контакте в морской воде дюралюминия с никелем интенсивно  растворятся будет именно дюралюминий.

  1.  ИНГИБИТОРЫ КОРРОЗИИ

Ингибиторы коррозии – вещества, которые, находясь в коррозионной среде в достаточной концентрации, сильно замедляют либо вообще прекращают коррозионное разрушение металла .  Ингибитором коррозии может быть как одно соединение, так и смесь нескольких.

Эффективность действия ингибиторов коррозии можно оценить по двум показателям: степени защиты (Z, %) и коэффициенту торможения коррозии γ (защитный эффект ингибитора):

1) Формула для определения степени защиты Z:

Z = [(K1– K2) / K1] •100 = [(i1 – i2) / i1] •100,

где K1, K2 – скорость коррозии (растворения) металла в среде без  ингибитора и с ним [г / (м2 • ч)]; i1, i2 – плотность коррозионного тока в не ингибируемой среде и ингибируемой, соответственно [А / см2].

Значение Z равно 100% тогда, когда металл полностью защищен, скорость коррозии сводится к 0.

2) Защитный эффект ингибитора рассчитывается по формуле:

γ = K1 / K2 = i1 / i2.

Коэффициент торможения показывает, во сколько раз под действием ингибитора уменьшается скорость коррозии.

Между коэффициентом торможения и степенью защиты существует связь, определяющаяся формулой:

Z = (1 – 1/ γ) • 100.

3. 1. КЛАССИФИКАЦИЯ ИНГИБИТОРОВ КОРРОЗИИ

По  типу среды ингибиторы коррозии различают:

  1.  ингибиторы нейтральных коррозионных сред;
  2.  атмосферной коррозии;
  3.  ингибиторы кислых сред;
  4.  сероводородной коррозии;
  5.  ингибиторы нефтяных сред.

В разных коррозионных средах один и тот же ингибитор может вести себя совершенно по-разному.

Классификация ингибиторов коррозии по механизму действия:

  1.  пассивирующие ингибиторы;
  2.  адсорбционные ингибиторы.

По характеру защитного действия различают ингибиторы:

  1.  анодные; 
  2.  катодные;
  3.  смешанные.

По химической природе ингибиторы делятся на:

  1.  летучие;
  2.  органические;
  3.  неорганические.

Адсорбционные ингибиторы коррозии адсорбируются на поверхности защищаемого изделия, образуя пленку, и тормозят электрохимические реакции. Иногда достаточно образование тонкой мономолекулярной пленки. Адсорбционными ингибиторами чаще всего являются ПАВ (поверхностно-активные вещества), а также органические соединения. При  воздействии на изделие они дополнительно усиливают защитные свойства оксидной пленки. Поэтому можно сделать вывод, что наличие  в коррозионной среде кислорода способствует увеличению защитного  эффекта адсорбционных ингибиторов коррозии. Если же оксидная пленка неустойчива -  затрудняется адсорбция ингибитора на поверхности металла, кислород дополнительного влияния не оказывает.

Пассивирующие ингибиторы коррозии играют важную роль при образовании на поверхности металла защитной пленки, которая пассивирует ее. Пассиваторами чаще всего   являются неорганические соединения, обладающие окислительными свойствами (нитриты, молибдаты, хроматы). При обработке поверхности этими веществами коррозионный потенциал сдвигается к положительной стороне. Пассивирующие соединения считаются более эффективными, чем большая часть  не пассивирующих.

Неорганические ингибиторы коррозии  используются чаще всего. К ним относятся некоторые пассиваторы, катодные, анодные, пленкообразующие ингибиторы и т.д. Ингибирующий эффект таких соединений можно объяснить их составом. Некоторые анионы (PO43-, NO2-, CrO42-, SiO32-, Cr2O72-), а также катионы (Ni2+, Са2+, As3+, Sb3+, Zn2+, Bi3+) способствуют уменьшению скорости коррозионного процесса.

К неорганическим ингибиторам коррозии относятся фосфаты, бихроматы, хроматы, нитриты, полифосфаты, силикаты и т.д.

Органические ингибиторы коррозии  считаются веществами смешанного действия. Они замедляю катодную и анодную реакции. Очень часто их используют при кислотном травлении. При этом различные загрязнения, ржавчина, окалина удаляются с поверхности, а основной металл не растворяется. Защитный эффект органических ингибиторов зависит от их концентрации, температуры, природы соединений.

Чаще всего в состав органических ингибиторов входит кислород, азот, сера. Они адсорбируются исключительно на поверхности металла. К органическим ингибиторам относятся некоторые летучие, амины, органические кислоты и  их соли, меркаптаны (тиолы) и др.

3. 2. ИНГИБИТОРЫ НЕЙТРАЛЬНЫХ СРЕД

По Розенфельду ингибиторы  данного вида классифицируют так:

  1.  с окислительными свойствами (хроматы, нитрит натрия, органические соединения, которые содержат нитро и карбоксильную группу);
  2.  ингибиторы, которые образуют труднорастворимые соединения, но не имеют окислительных свойств (бораты, силикаты, фосфаты, карбонат натрия, гидрат натрия);
  3.  ингибиторы со слабым окислительным действием с анионами типа (MeО4)n- (ванадаты, хроматы, вольфраматы, молибдаты).

Ниже рассмотрено несколько групп часто применяемых ингибиторов коррозии нейтральных сред.

     3. 2. 1. НИТРИТ НАТРИЯ

Самое широкое распространение среди ингибиторов нейтральных сред получил анодный ингибитор нитрит натрия NaNO2.  Доступный,  простой ингибитор очень часто применяется для защиты стали в воде. При повышении температуры эффективность действия нитрита натрия уменьшается, поэтому нужно повышать его концентрацию.

Очень часто нитрат натрия применяется при межоперационной защите металла. Для этого его поверхность обрабатывают 10% водным раствором ингибитора. Концентрация нитрита натрия во многом зависит от количества в воде ионов хлора. Концентрация данного вещества  должна быть раз в 10 больше концентрации ионов хлора. Нитрит натрия не применяется для защиты меди и цинка, при рН более 5.

     3. 2. 2. ФОСФАТЫ

Широко применяются для ингибирования охладительных систем энергетических установок. Фосфаты – довольно сильные ингибиторы, кроме того нетоксичные. С ними обращаться нужно осторожно, чтоб не переборщить с концентрацией. Если ввести слишком большое количество – скорость коррозии наоборот увеличится.  Фосфаты с продуктами коррозии образуют на поверхности стали труднорастворимые соединения, которые со временем уплотняются,  изолируя  поверхность. Фосфаты, как и нитрит натрия, является опасным ингибитором, т.к. если ввести его в систему в слишком малом либо большом количестве – это приведет к усилению коррозионного разрушения. Но перед нитритом натрия фосфаты имеют свои преимущества – их защитный эффект не зависит от содержания в воде хлоридов. 10 мг/л – часто используемая концентрация фосфатов для защиты стали в воде.

     3. 2. 3. ХРОМАТЫ

Хроматы относятся к универсальным ингибиторам, т.к. применяются для защиты почти всех металлов. Очень эффективны для ингибирования водных сред. На практике часто применяют для защиты от коррозии теплоносителей. На защитный эффект большое влияние оказывают хлор ионы, которые уменьшают  действие ингибитора.  Концентрация хроматов должна превышать концентрацию хлор ионов не менее, чем в 2 – 3 раза.

С повышением температуры  эффективность действия хроматов сразу значительно уменьшается, требуется его большая концентрация. Например, при температуре коррозионной среды 20 °С требуется  в 2 – 3 раза меньше ингибитора, чем при температуре 80 °С. Если при повышенной температуре  в коррозионной среде содержится недостаточное количество ингибирующих добавок – коррозия носит локальный характер.

Немного более эффективными считаются  хроматы на органической основе (метиламина, циклогексиламина, изопропиламина, гуанидина).

Хроматы применяются только для защиты металла в оборотной воде.

Среди ингибиторов  нейтральных сред можно выделить: ОЭДФ, НТА, ФБТК, ЭДТА, НТФ. Эти комплексные ингибиторы (комплексоны) хорошо защищают  изделие  лишь в жесткой воде, образуя соединения с катионами магния, кальция.

Для мягких вод больше подходят ингибиторы ИФХАН-31 и 34, которые отлично защищают системы, состоящие из различных металлов и сплавов.

      3. 3. ИНГИБИТОРЫ АТМОСФЕРНОЙ КОРРОЗИИ

Для защиты металла от атмосферной коррозии применяют контактные и летучие ингибиторы.

     3. 3. 1. КОНТАКТНЫЕ

Контактные ингибиторы наносятся непосредственно на поверхность защищаемого изделия (как пленка, например) или же ими пропитывают пропиточные материалы.

К контактным можно отнести хроматы, нитриты, бензоаты, фосфаты и др. Это, в основном, неорганические соединения, состоящие из веществ, воздействующих на кинетику электродных реакций.

Перечень всех ингибиторов атмосферной коррозии и  рекомендации по их применению можно найти в ГОСТ 9.014 – 78.

Контактные ингибиторы отличаются малой летучестью  при нормальных температурах (1,33 • 10-2 МПа при температуре 20 – 25 °С). Они гидрофобизируют поверхность металла, либо пассивируют её (может и то и другое).

     3. 3. 2. ЛЕТУЧИЕ

Летучие ингибиторы атмосферной коррозии самопроизвольно адсорбируются на поверхности изделия, находятся при нормальной температуре в летучем состоянии. Воздействуют на кинетику электродных реакций.  К ним относятся соли слабых неорганических и органических кислот, аминов (бензоаты, нитриты, фосфаты, китоны, нитрофеноляты, нитробензоаты и др.)

Летучие ингибиторы атмосферной коррозии адсорбируются на поверхности защищаемого металла тонким мономолекулярным слоем, происходит его взаимодействие с металлом.

В зависимости от класса ингибирующего соединения  оно может ускорять катодную реакцию (переводит поверхность металла в пассивное состояние), либо тормозить анодную и катодную. Действие ингибитора зависит от его строения и состава, механизма испарения, давления насыщенного пара, адсорбционных свойств поверхности, самого ингибитора, способности изменять кинетику процесса.

     3. 3. 3. ПРИМЕНЕНИЕ

Для защиты металлов от атмосферной коррозии во время перевозки, хранения и консервации очень часто используют ингибированную антикоррозионную бумагу. При производстве ингибированной бумаги, основным её активным элементом является ингибирующее вещество.

Для защиты черных металлов от атмосферной коррозии широко применяется ингибированная упаковочная бумага, которая содержит ингибитор УНИ. Данная антикоррозионная бумага выпускается трех видов: УНИ-22-80, УНИ-14-40 и УНИ-14-80 по ГОСТ 16295-77.

Первые две цифры в обозначении указывают на количество ингибитора (в граммах), которое использовали для ингибирования 1 квадратного метра бумаги. Вторые же цифры указывают массу одного квадратного метра упаковочной бумаги-основы.

Ингибитор для защиты от атмосферной коррозии УНИ – это смесь двух веществ, нитрита натрия и уротропина в одинаковом соотношении. Это белый кристаллический порошок. С него делается раствор, которым пропитывают специальную бумагу. Только потом она становится ингибированной, антикоррозионной. Порошок, растворившись в воде, образует прозрачную жидкость. рН 30%-го раствора составляет 8 - 8,5. Порошкообразный ингибитор УНИ хорошо растворяется   в воде, плохо в спирте и совершенно нерастворим в углеводородах. Ингибитор летучий и малотоксичен.

Используется для защиты от атмосферной коррозии черных металлов, фосфатированную, хромированную и оксидированную сталь. Нельзя применять в жестких коррозионных условиях для защиты цветных металлов, т.к. ингибитор будет способствовать усилению процессов коррозии.

Ингибитор УНИ абсолютно не влияет на кожу, текстиль, органические покрытия, дерево, упаковочную бумагу и лакокрасочные материалы.

     3. 4. ИНГИБИТОРЫ КИСЛОТНОЙ КОРРОЗИИ

Ингибиторами кислотной коррозии называются вещества, которые при малых их концентрациях в кислотах либо кислых средах значительно уменьшают скорость коррозионного разрушения. Концентрация  должна составлять около 5 г/л. В качестве ингибиторов кислотных сред чаще всего используют органические соединения (иногда неорганические). Используются такие ингибиторы чаще всего при травлении, например, для снятия окалины с поверхности металла. Ингибиторы кислотной коррозии были известны еще в далеком  средневековье. В те времена мастера-оружейники вводили в раствор для травления дрожжи, муку, отруби и некоторые другие вещества. Травление уже тогда применяли для снятия окалины со стали. Мука, дрожи, отруби  выступали в качестве ингибиторов.

Если при травлении не применять никаких дополнительных добавок, уменьшающих коррозионное разрушение металла, то его потери могут составлять до 5 %, что достаточно много и недопустимо для многих изделий.

Ингибиторы кислотной коррозии: ХОСП-10, И-2В, ПА-6, ПБ-8, КИ-1, ИК-40, КПИ-3, И-1-А, ИК-45, катапин, С-5, ЧМ, ПКУ, КХ, ТДА, ХОД, пеназолин др.

Ингибиторы кислотной коррозии тормозят процесс разрушения металла за счет  увеличения поляризуемости анодного,  катодного либо обоих электродных процессов.

Для цинка, железа, стали, алюминия в среде H2SO4 очень эффективны ингибиторы катионного типа (катапин К, КПИ-9, КПИ-1, КПИ-7). Анионного типа при этом не эффективны.

Для свинца, кадмия, олова катионные ингибиторы не используются.

Самыми эффективными ингибиторами кислотной коррозии считаются соединения, в состав которых входят кислород, сера, азот.

     3. 5. АНОДНЫЕ ИНГИБИТОРЫ КОРРОЗИИ

Анодные ингибирующие добавки  воздействуют на анодную реакцию. Это соединения, обладающие окислительным воздействием (нитриты, хроматы). Они способствуют образованию на анодной части металлического изделия очень тонкой пассивной пленки, которая значительно замедляет скорость коррозии на этом участке.  Анодные ингибиторы называют еще пассиваторами. Механизм действия анодных ингибиторов: за счет образования пассивной пленки площадь анодной поверхности уменьшается; торможением анодного перехода основного металла в раствор.

Большинство анодных ингибиторов коррозии считается опасными, т.к. при передозировке или их недостатке  в растворе может наблюдаться эффект, обратный защитному (увеличение скорости коррозии). К анодным ингибиторам относятся фосфаты, силикаты, карбонаты щелочных металлов, гидрофосфаты и многие другие. При недостаточных концентрациях в коррозионной среде анодных ингибиторов коррозии наблюдается локализация коррозионных процессов, увеличение скорости растворения металла на отдельных участках.

     3. 6. КАТОДНЫЕ ИНГИБИТОРЫ КОРРОЗИИ

Катодные ингибиторы замедляют катодную реакцию, растворение металла. Стационарный потенциал системы сдвигается  в отрицательную сторону, идет уменьшение коррозионного тока.  На поверхности образуется адсорбционная пленка. Проходит химическая реакция, в результате которой связывается деполяризатор. На поверхности защищаемого металла образуются труднорастворимые соединения, которые замедляют коррозию, блокирую поверхность. Катодные ингибирующие вещества менее эффективны, чем смешанные или анодные, поэтому их использование ограничено. Катодные, как и анодные, не применяются в кислых средах, т.к. в них малоэффективны. К ним  относятся сульфит натрия, гидразин.

     3. 7. СМЕШАННЫЕ ИНГИБИТОРЫ КОРРОЗИИ

Смешанные ингибиторы коррозии тормозят анодную и катодную реакцию. Поэтому считается, что смешанные ингибиторы более эффективны. Большинство таких соединений работают по окислительному типу.

Ярким примером данного вида веществ можно считать хроматы.

  1.  ФОСФАТИРОВАНИЕ

Фосфатирование используют для дополнительной защиты от коррозии, улучшения  твердости, износостойкости, повышения электроизоляционных свойств основного покрытия на черных и цветных металлах. Суть процесса фосфатирования состоит в создании на поверхности защищаемого изделия слоя малорастворимых фосфатов железа, цинка или марганца.

Фосфатированию подвергаются: чугун, низколегированные, углеродистые стали,  кадмий, цинк, медь, сплавы меди, алюминий.

Фосфатированию плохо поддаются высоколегированные стали. Изделия, подвергшиеся фосфатированию, эксплуатируются даже в тропиках. Фосфатная пленка не боится органических масел, смазочных, горячих материалов, толуола, бензола,  всех газов, кроме сероводорода.

Под воздействием щелочей, кислот, пресной, морской воды, аммиака, водяного пара покрытие довольно быстро разрушается.   Непродолжительный срок службы покрытия также связан с его низкой эластичностью и прочностью.

Процесс фосфатирования  нашел широкое применение в автомобильной промышленности. Фосфатная пленка – наилучший грунт. Стальной корпус автомобиля перед покраской подвергают фосфатированию, а далее окрашивают эмалями.

  1.  1.  ФОСФАТНОЕ ПОКРЫТИЕ

     4. 1. 1. ТОЛЩИНА И СТРУКТУРА ФОСФАТНОГО ПОКРЫТИЯ

Толщина фосфатного слоя составляет от 2 – 8 до 40 - 50 мкм (зависит от режима фосфатирования, подготовки поверхности, состава раствора для фосфатирования).  Толщина покрытия связана с его структурой. Мелкокристаллические защитные слои имеют меньшую толщину (1 – 5 мкм) и обладают более выраженной защитной способностью. В связи с этим их намного чаще используют. Получают такие покрытия из цинкфосфатных растворов, которые содержат ускорители (окисляющие элементы). Мелкокристаллические слои  не используются в качестве самостоятельных защитных. После получения такого слоя поверхность подвергают дополнительной обработке лакокрасочными материалами.

Крупнокристаллические фосфатные слои более толстые, получают их из марганцевофосфатных растворов. После промасливания могут служить самостоятельными покрытиями.

Кристаллы фосфатов имеют пластинчатую структуру, благодаря чему пленка отлично впитывает различные пропитки, лаки, удерживая их в себе.

Фосфатное покрытие состоит из двух слоев. Первый, плотно прилегающий к поверхности слой, плотно связан с металлом, незначительной толщины, имеет пористую структуру, а также гладкий и достаточно эластичный. Он состоит, в большей части, с монофосфатов железа. Второй слой (наружный) – состоит из монофосфатов марганца, вторичных и третичных фосфатов. Он более хрупкий, кристаллический. Характеристиками именно наружного слоя обуславливается ценность фосфатных пленок.

     4. 1. 2. ЦВЕТ ФОСФАТНОГО ПОКРЫТИЯ

Цвет фосфатного покрытия колеблется  от светло-серого до темно серого (почти черного). Светло-серые фосфатные пленки образуются на цветных металлах и малоуглеродистых сталях. Предварительно подвергшихся пескоструйной обработке поверхностях, в растворах повышенной кислотности.

Если чугунное (либо из высоколегированной стали) изделие предварительно подвергалось травлению, и концентрация ортофосфорной кислоты больше обычного -  фосфатный слой получается более темного оттенка.  Фосфатное покрытие зеленоватого оттенка образуется на поверхности стали, содержащей никель и хром.

     4. 1. 3. СВОЙСТВА ФОСФАТНОГО ПОКРЫТИЯ

Полученное фосфатное покрытие может использоваться как самостоятельное защитное, но в большинстве случаев его используют как основу под лакокрасочное, смазочное, либо перед пассивированием. То, что его очень редко используют, как самостоятельное, можно объяснить тем, что оно легко разрушается под воздействием кислот и щелочей.

Фосфатное покрытие не подвергается воздействию кислорода воздуха, смазок, масел, керосина, не смачивается расплавленными металлами. Фосфатный слой может выдержать непродолжительное влияние температуры около 500 °С. Наибольшая минусовая температура, при которой не разрушается покрытие     -75 °С. При длительной выдержке фосфатный слой теряет свои защитные свойства и постепенно разрушается.

Фосфатное покрытие отличается высоким электросопротивлением, может выдержать напряжение  до 500 В. Чтоб повысить пробивное напряжение готового фосфатного покрытия (до 1000 В)  – его дополнительно пропитывают бакелитовыми либо масляными лаками.  Фосфатное покрытие по твердости мягче стали, но более твердое, чем латунь или медь.

При щелочном оксидировании стали полученный защитный слой имеет меньшую защитную способность, чем обычные фосфатные слои.

Подготовка поверхности перед операцией фосфатирования играет важную роль, т.к. от ее способа и качества во многом  зависят  свойства полученного покрытия, а именно – структура, адгезионная способность, толщина, цвет фосфатной пленки.

При фосфатировании заранее протравленной поверхности  (с использованием HCl, H2SO4, H3PO4) образуются крупнокристаллические, рыхлые фосфатные слои, толщиной до 40 – 50 мкм. Они обладают достаточно низкими защитными свойствами, поэтому для улучшения качества пленки  деталь промывают в 3 – 5 % растворе кальцинированной соды, а далее в воде и затем только фосфатируют.  Или же в 1 – 2 % растворе хозяйственного мыла и 5 – 8 % растворе кальцинированной соды при температуре 55 – 60 °С.

Мелкокристаллические, тонкие (толщиной от 5 до 10 мкм) пленки образуются на поверхностях, обработанных пескоструйным методом с последующим обезжириваниям (с использованием органических растворителей или же химическим способом), также механически обработанные кругом, и т.п. Такие фосфатные пленки отличаются хорошей адгезией к поверхности и высокими защитными свойствами.

     4. 2.  СУТЬ ПРОЦЕССА ФОСФАТИРОВАНИЯ

Фосфорная кислота (H3PO4) образует три вида солей (именно на свойствах солей фосфорной кислоты и основан метод защиты): дигидрофосфаты, моногидрофосфаты, фосфаты.

Дигидрофосфаты Me(H2PO4)2 – однозамещенные соли, где Me – двухвалентный металл. Образуются сразу при первичном контакте металла с фосфорной кислотой. Взаимодействие описывается реакцией:

Me + 2H3PO4 → Me(H2PO4)2 + H2↑.

При дальнейшем взаимодействии кислоты с металлом (концентрация кислоты уменьшается) образуются двухзамещенные (моногидрофосфаты MeHPO4) и трехзамещенные (фосфаты Me3(PO4)2) соли.

Реакции образования вторичных и третичных солей:

Me(H2PO4)2 ↔ MeHPO4 + H3PO4 - продуктами реакции являются двухзамещенная соль и свободная ортофосфорная кислота;

3Me(H2PO4)2 ↔ Me3(PO4)2 + 4H3PO4 – образуется трехзамещенная соль, свободная ортофосфорная кислота.

Труднорастворимые  фосфаты железа – основная составляющая часть фосфатных покрытий. Их качество определяется свободной и основной кислотностью раствора, природой катионов металла, концентрацией монофосфатов.

 При введении в раствор для фосфатирования окислительных анионов (например, ClO3, NO2, NO3) процесс формирования защитной пленки значительно ускоряется.

При фосфатировании  на поверхности металла наблюдается два основных процесса – осаждение фосфатов и растворение основного металла.

     4. 2. 1. ФОСФАТИРОВАНИЕ ЧЁРНЫХ МЕТАЛЛОВ

Сегодня самое широкое применение получил препарат для фосфатирования Мажеф. Выпускается в виде серой массы, расфасованной по бочкам или ящикам. Отличается характерным кисловатым запахом. Название препарата произошло от первых букв его составных частей: марганец, железо, фосфорная кислота.

Фосфатная пленка при использовании данного препарата обладает хорошими защитными свойствами.

Процесс получения фосфатной пленки с использованием данного препарата имеет свои недостатки: высокие температуры, узкий рабочий интервал температур, длительность операции, наводораживание стали (из-за  сильного выделения водорода). Чтоб снизить наводораживание уменьшают  длительность процесса.

Фосфатирование может быть электрохимическим и химическим.

Химическое фосфатирование черных металлов, в свою очередь, подразделяется на холодное, нормальное и ускоренное.

     4. 2. 2. ХОЛОДНОЕ ФОСФАТИРОВАНИЕ

Холодное фосфатирование проводится без подогрева рабочих растворов. Фосфатное покрытие получается довольно тонким и используется в качестве  основы под покраску. В основу растворов для холодного фосфатирования входят препарат Мажеф и  однозамещенный фосфат цинка (Zn(H2PO4)2). NaNO2 и  NaF  играют роль активаторов процесса.

Составы для холодного фосфатирования:

Состав №1: 25 – 30 г/л пр. Мажеф, 35 – 40 г/л Zn(NO3)2 • 6H2O, 5 – 10 г/л NaF, длительность обработки 40 минут;

Состав №2: 60 – 70 г/л Zn(H2PO4)2, 80 – 100 г/л Zn(NO3)2 • 6H2O, 0,3 – 1.0 г/л NaNO2, продолжительность обработки 15 – 25 мин.;

Состав №3: 100 г/л Zn(H2PO4)2, 6 г/л NaF, 2 г/л NaNO2, длительность обработки 30 - 40 минут;

Состав №4: 18 – 21 г/л ZnO, 80 – 85 г/л H3PO4, 1 - 2 г/л NaNO2, продолжительность обработки 15 – 20 минут.

Если температуру раствора увеличить – можно получить мелкокристаллическое покрытие.

Растворы для холодного фосфатирования довольно быстро гидролизуются (при контакте составных веществ с водой разлагаются основные молекулы и образуются новые соединения), увеличивается свободная кислотность раствора. Это отрицательно сказывается на качестве фосфатного покрытия, т.к. слой получается пористый и с низкими защитными характеристиками. Поэтому холодное фосфатирование используется довольно редко.

     4. 2. 3. НОРМАЛЬНОЕ ФОСФАТИРОВАНИЕ

Препарат Мажеф, используемый также и при нормальном фосфатировании, имеет химический  состав: 2,4 – 2,5 % Fe, 14 % Mn, 46 – 52 % фосфатов, 1 % SO42-, самую малость ионов хлора и CaO, 1 – 2 % H2O.

Однозамещенные соли ортофосфорной кислоты, марганца, железа (MnHPO4, Fe(H2PO4)2,  Mn(H2PO4)2) и являются основой препарата.

Наилучший результат фосфатирования дает раствор, содержащий 30 – 33 г/л препарата Мажеф. Температура – 97 – 98 °С. Если вести процесс при более высоких температурах – образуется много шлама, а при более низких – покрытие имеет кристаллическую структуру.

Длительность процесса нормального фосфатирования: время выделения водорода + выдержка около 5 – 10 минут. Кислотность раствора (общая) должна составлять около 30 точек, свободная 3 – 4 точки. (Точка – мера  общей и свободной кислотности раствора. Одна точка показывает количество мм 0,2 н. раствора щелочи,  израсходованного на процесс титрования  10 мл фосфатного раствора).

Если свободная кислотность превышает указанное значение – ухудшаются свойства фосфатного слоя, а сам процесс затягивается по времени. При уменьшении – полученные пленки слишком тонкие и незащитные.

При повышении концентрации препарата Мажеф до 100 – 200 г/л получают более толстые фосфатные слои с повышенными защитными свойствами и мелкокристаллической структуры. С повышением концентрации немного уменьшают температуру рабочего р-ра (до 80 – 85 °С).

При фосфатировании высоколегированных сталей количество препарата Мажеф составляет около 30 – 32 г/л. Дополнительно вводят 10 – 12 % BaCl2 для улучшения качества фосфатного слоя. Изделие выдерживают в рабочем растворе 45 – 60 минут при температуре около 100 °С.

     4. 2. 4. УСКОРЕННОЕ ФОСФАТИРОВАНИЕ

Ускоренное фосфатирование получило довольно широкое промышленное применение, т.к. процесс ведется быстрее, чем при нормальном, и имеет свои преимущества.

Длительность процесса ускоренного фосфатирования (с использованием препарата Мажеф) составляет 8 – 15 минут. Рабочий раствор подогревают до температуры 45 – 65 °С (или же 92 – 96 °С, если использовать электролит №2). Дополнительно вводят окислители (NaF, Zn(NO3)2 и др.), благодаря которым ускоряется процесс фосфатирования, выделяется намного меньше водорода и окисляется Fe2+ до Fe3+.

Растворы для ускоренного фосфатирования с применением препарата Мажеф:

Раствор №1: 30 – 40 г/л  препарата Мажеф, 50 – 65 г/л Zn(NO3)2 • 6H2O, 2 – 5 г/л NaF;

Раствор №2:  30 – 40 г/л  препарата Мажеф, 50 – 70 г/л Zn(NO3)2 • 6H2O, 4 – 5 г/л NaNO3, 0,1 – 1,0 г/л H3PO4.

После ускоренного  фосфатирования изделия обрабатывают раствором бихромата калия, а далее – сушат.

Пленки, полученные при ускоренном фосфатировании, небольшой толщины и не отличаются высокими защитными свойствами, поэтому их используют как основу (грунт) для лакокрасочных покрытий.

Ускоренное фосфатирование может проводится и с использованием других растворов, например, цинкофосфатных (основа – первичный фосфат цинка).

Составы для ускоренного фосфатирования с применением цинкофосфатных растворов:

Состав  №1: 8 – 12 г/л Zn(H2PO4)2, 10 – 20 г/л Zn(NO3)2 • 6H2O, 30 – 40 г/л Ba(NO3)2, температура 75 – 85 °С, продолжительность 3 -  10 минут;

Состав  №2: 28 – 36 г/л Zn(H2PO4)2, 42 – 58 г/л Zn(NO3)2 • 6H2O, 9,5 – 15,0 г/л H3PO4, температура 85 – 95 °С, продолжительность 10 – 25 минут.

Покрытия, полученные в вышеописанных электролитах, состоят с Zn3(PO4)2 • 4H2O  и  Zn2Fe(PO4)2 • 4H2O.  Большая часть фосфатов образуется на поверхности в первые минуты процесса, когда скорость нарастания фосфатов превышает скорость их растворения. При одинаковых значениях этих скоростей рост фосфатной пленки прекращается.

Ускоренное фосфатирование можно проводить как погружением в ванну с раствором, так и распылением состава на поверхность.

Для струйного ускоренного фосфатирования часто используют раствор на основе препарата Мажеф следующего состава: 30 – 60 г/л пр. Мажеф, 50 – 70 г/л Zn(NO3)2 • 6H2O, 2 – 4 г/л NaNO2. Температура раствора -  15 – 25 °С, рН 2,6 – 3,2.

Широко используются концентраты для фосфатирования стали (на основе первичных фосфатов), такие, как КФЭ-1, КФЭ-2, КФ-1, КФ-3.

Чтоб улучшить структуру покрытия в основной р-вор вводят оксалаты цинка (до 0,1 г/л). При фосфатировании в таком растворе с поверхности изделия удаляется ржавчина.

Частным случаем химического - является черное фосфатирование. Используется в оптическом приборостроении. Фосфатная пленка черного цвета более привлекательна на вид и более коррозионноустойчива, чем полученные другими способами. Процесс черного фосфатирования состоит с двух частей. Сначала, предварительным фосфатированием, получают черную пленку. Далее, при фосфатном пассивировании, заполняются поры начального слоя.

     4. 2. 5. ЭЛЕКТРОХИМИЧЕСКОЕ ФОСФАТИРОВАНИЕ

Электрохимическое фосфатирование проводят в растворах схожего состава, но с использованием постоянного либо переменного тока. Это позволяет повысить производительность процесса.

Детали развешивают на катодных штангах, анодами служат пластины (цинк или углеродистая сталь, зависит от состава электролита). Плотность тока – от 0,3 до 3 А/дм2. Продолжительность процесса – от 5 до 20 мин.

Полученные пленки используются в качестве подслоя для лакокрасочного покрытия.

Недостаток электрохимического фосфатирования – низкая рассеивающая способность электролита. Вследствии, на деталях сложной формы фосфатное покрытие ложится неравномерно.

 

    4. 2. 6. ФОСФАТИРОВАНИЕ ЦВЕТНЫХ МЕТАЛЛОВ

Фосфатированию часто подвергают многие цветные металлы. Чаще всего это цинк, магний, алюминий, кадмий, никель, титан.

Фосфатирование титана проводят для повышения его износостойкости, антифрикционных свойств. Процесс ведется при температуре 98 – 99 °С около 10 – 30 минут. Применяемый состав: 10 – 100 г/л ортофосфорной кислоты и такое же количество фторидов (NaF, NH4F или KF).

Магний фосфатируют в растворах однозамещенных фосфатов для защиты от коррозии. Фосфатирование магния (как и алюминия) применяют реже, чем его оксидирование.

Для кадмия, алюминия, цинка и большинства цветных металлов фосфатная пленка используется в качестве основы перед нанесением лакокрасочного покрытия.

Алюминий фосфатируют в растворах ортофосфорной кислоты с содержанием  CrO3 и NaF или HF. Пленки имеют голубовато-зеленый цвет, поэтому процесс получил название «голубое фосфатирование». Получившийся фосфатный слой тонкий (около 3 мкм), гладкий, аморфный,  не отличается высокими защитными свойствами (имеет низкие прочностные характеристики). Состав покрытия таков: около 50 – 55% CrPO4,  17 – 23% AlPO4, 22 – 23% воды. После промывки в холодной воде и сушки при температуре ниже 60 °С фосфатная пленка становится более прочной, может выдержать температуру до 300 °С. Если готовое фосфатное покрытие на протяжении 10 минут обрабатывать в 10 % растворе K2Cr2O7 (при температуре 75 – 80 °С) – его коррозионная стойкость значительно увеличится.

Для фосфатирования кадмия, цинка применяют универсальный цинк-фосфатный раствор. Для получения фосфатной пленки на цинке можно использовать раствор на основе композиции Ликонда  Ф1А, обработка ведется при температуре 19 – 40 °С на протяжении 5 – 10 минут. В итоге – на поверхности цинка образуется мелкокристаллическая серо-дымчатая фосфатная пленка с высокими защитными свойствами (лучше, чем при хроматировании).

Никель (его сплавы) фосфатируют только матовый, на блестящем покрытие почти не осаждается. Рекомендованный состав раствора:  15 г/л H3PO4, 13 г/л  NaF, 200 г/л  Zn(NO3)2.  Длительность обработки – 35 – 45 минут при температуре 25 – 35  °С. рН раствора около 2,0.

     4. 3. УЛУЧШЕНИЕ ЗАЩИТНЫХ СВОЙСТВ ФОСФАТНЫХ ПЛЁНОК

Фосфатные пленки не обладают достаточными защитными свойствами из-за своей пористой структуры, поэтому после получения их еще дополнительно обрабатывают. Для этого применяют пассивирующие растворы K2Cr2O7 (калия дихромат) либо Na2Cr2O7 (натрия дихромат). Процесс ведется при температуре 70 – 80 °С. Пассивирование фосфатных пленок возможно в двух составах: 80 – 100 г/л хромата и 3 – 5 г/л. Для первого раствора время выдержки составляет 10 – 20 минут, и дополнительная промывка до сушки. Для второго – 1 – 3 минуты, после фосфатирования изделие сушат без предварительной промывки.

После проведения операции пассивирования готовые изделия пропитывают минеральным маслом (горячим), а далее гидрофобизируют (3 – 5 мин). Для гидрофобизации применяют 10 % раствор в бензине кремнийорганической жидкости ГФЖ-94.

Если деталь предназначена для холодной деформации – ее промывают и обрабатывают  около 3 – 5 минут при 60 – 70 °С в мыльном растворе (70 – 100 г/л хозяйственного мыла).

  1.  СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Коррозия - http://www.okorrozii.com/ 

2. Электрохимическая коррозия http://www.okorrozii.com/elektrximichiskakorozia.html 

3. Ингибиторы коррозии - http://www.okorrozii.com/ingibitor-korrozii.html 

4. Фосфатирование - http://www.okorrozii.com/fosfatirovanie.html 


 

А также другие работы, которые могут Вас заинтересовать

69143. Датчики 178.5 KB
  Датчики реагируют на различные виды воздействий. Датчики температуры. Таблица 1 Датчики температуры Виды датчиков Типы датчиков Диапазон сопротивлений Ом Диапазон рабочих температур оС Достоинства Недостатки Проволочные термосопротивления ТСМ Линейная...
69145. СОВРЕМЕННОЕ СОСТОЯНИЕ ЭЛЕКТРОНИКИ И КЛАССИФИКАЦИЯ ЭЛЕКТРОННЫХ УСТРОЙСТВ 84 KB
  Этапы и направления развития электроники. Классификация и области применения устройств компьютерной электроники. Значительные изменения во многих отраслях науки и техники обусловлены развитием электроники.
69146. ЭЛЕМЕНТНАЯ БАЗА КОМПЬЮТЕРНОЙ ЭЛЕКТРОНИКИ 328.5 KB
  Постоянные резисторы подразделяют на резисторы общего и специального назначения. Резисторы общего назначения имеют диапазон номинальных значений сопротивлений от 1 Ом до 10 МОм с номинальной мощностью рассеяния от 0125 до 100 Вт.
69147. Полупроводниковые диоды. Принцип работы. Основные классификации и характеристики 44.5 KB
  Полупроводниковые диоды. Обозначение: Uпр = 0608 В для Si Si кремний Uпр = 0304 В для Ge Ge германий Вольт-амперная характеристика идеального диода прямая ветвь прямой ток обусловлено движение основных носителей; обратный ток движение неосновных носителей...
69148. Биполярные транзисторы, принцип работы, основные параметры и характеристики 88 KB
  Движение тока осуществляется за счет перемещения двух носителей. Типы включения транзистора режимы работы: Активный режим рабочий. 1 режим отсечки 2 активный режим 3 точка насыщения 4 зона насыщения С точки зрения схемотехники различают 2 режима...
69149. ПОПЕРЕЧНЫЙ ИЗГИБ ПРЯМОУГОЛЬНЫХ ПЛАСТИНОК 1.12 MB
  Срединная плоскость пластинки плоскость делящая толщину пластинки пополам. Изогнутой срединной поверхностью пластинки называют поверхность в которую переходит срединная плоскость при деформации. Нагрузки действующие на пластинку...
69151. УСТОЙЧИВОСТЬ ПЛАСТИНОК 779.5 KB
  Основной особенностью пластинки является её способность воспринимать только распределённую нагрузку действующую главным образом в её плоскости рис. Нагружение пластины граничные условия для пластинки более разнообразны так как включают опирание продольных кромок рис.