67717

Метод Эйлера первого порядка точности и Рунге – Кутта четвёртого порядка точности. Визуализация численных методов

Курсовая

Информатика, кибернетика и программирование

Цель и задача данной курсовой работы заключается в том чтобы рассчитать и научиться пользоваться несколькими способами решение дифференциального уравнения, добиться вывода графических изображений в программах используемых для этой работы.

Русский

2016-09-14

222 KB

5 чел.

УРАЛЬСКИЙ ТЕХНИЧЕСКИЙ ИНСТИТУТ СВЯЗИ И ИНФОРМАТИКИ

ФАКУЛЬТЕТ ТЕЛЕКОММУНИКАЦИЙ

КАФЕДРА ИНФОРМАЦИОННЫХ СИСТЕМ И ТЕХНОЛОГИЙ

По курсу: “Информатика”.

По теме: “Визуализация численных методов”.

                                                                Выполнил:

                                                                    Сафронов Н.В.

                                                               группа  ИТЕ-13б

                                                      Проверила:

Бикбулатова Н.Г.

Екатеринбург 2012

Содержание

[1] Содержание

[2] Введение

[3] Цель и задачи

[4]
1. Постановка задачи

[4.0.0.1] y`=f(x,y) – тангенс угла наклона касательной к графику решения в точке (x,y) к оси OX (угловой коэффициент (в общей формуле прямой, y=k*x+b, обозначается как “k”)(рис 1).

[4.0.0.2] Рисунок 1. Геометрический смысл задачи Коши

[5]
1.1. Метод Эйлера

[6]
1.2. Метод Рунге – Кутта

[7]
2. Блок-схемы

[8] 2.1 Блок-схема программы

[9]

[10] 2.2 Блок-схема алгоритма функции

[11] 2.3 Блок-схема метода Эйлера

[12] 2.4 Блок-схема общего решения и поиска

[13] максимальных значений

[14]
2.5 Блок-схема метода Рунге-Кутта 4 порядка

[15] 3.Виды, формы

[16] 3.1. Начальная форма

[17] 4. Программа для решения дифференциального уравнения в Visual Basic

[18] 5. Решение задачи в MathCadе

Введение

Уравнения, связывающие независимую переменную, искомую функцию и её производные называют дифференциальным уравнением. Решение дифференциального уравнения называется функция, которая при подстановке в уравнение обращает его в тождество.

Если искомая (неизвестная) функция зависит от одной переменной, то дифференциальное уравнение называется обычным; в противном случае – уравнение в частных производных, содержащие несколько независимых переменных и производные по ним, которые называются частными. В данной работе будут рассматриваться методы решения обычных дифференциальных уравнений (ОДУ).

Чтобы решить ОДУ, необходимо знать значение зависимой переменной и (или) её производные при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши.

Числовое решение задачи Коши широко применяется в различных областях науки и техники, и число разработанных для него методов достаточно велико. Эти методы могут быть разделены на следующие группы.

  •  Одношаговые методы, в которых для нахождения следующей точки на кривой y=f(x) требуется информация лишь об одном предыдущем шаге. Одношаговыми являются метод Эйлера и методы Рунге – Кутта.
  •  Методы прогноза и коррекции (многошаговые), в которых для отыскивания следующей точки кривой y=f(x) требуется информация более чем об одной из предыдущих точек. Чтобы получить достаточно точное численное значение, часто прибегают к итерации. К числу таких методов относятся методы Милны, Адамса – Башфорта и Хемминга.
  •  Явные методы, в которых функция Ф в выражении (1) не зависит от yn+1.
  •  Неявные методы, в которых функция Ф зависит от yn+1.

В данной курсовой работе будут рассматриваться два одношаговых метода: метод Эйлера первого порядка точности и Рунге – Кутта четвёртого порядка точности.

Цель и задачи

          Цель и задача данной курсовой работы заключается в том чтобы рассчитать и научиться пользоваться несколькими способами решение дифференциального уравнения, добиться вывода графических изображений в программах используемых для этой работы.

1 Убедиться в том, что данные методы решений совпадаю и сделать вывод о сходимости.

2 Проанализировать результаты, которые получатся в обоих методах

3 Так же в соответствующих программах создать данные формы объекта


1. Постановка задачи

  В данной курсовой работе необходимо решить ОДУ вида y` = (y^2*ln(x)-y)/x  с заданными начальными значениями x0=1, xk=1.6, y0=4, h=0.1. Для проверки точности результатов дано общее решение данного уравнения      y=(1+ln(x)+c*x)^-1.

   Требуется решить уравнение двумя методами: Эйлера и Рунге – Кутта четвёртого порядка, сравнить результаты и сделать вывод какой метод эффективнее использовать, построить графики.

Численное решение задачи Коши сводится к табулированию искомой функции.

График решения дифференциального уравнения называется интегральной кривой.

Геометрический смысл задачи:

 y`=f(x,y) – тангенс угла наклона касательной к графику решения в точке (x,y) к оси OX (угловой коэффициент (в общей формуле прямой, y=k*x+b, обозначается как “k”)(рис 1). 

Рисунок 1. Геометрический смысл задачи Коши

Существующие решения:

Если правая часть f(x,y) непрерывная в некоторой области R, определяемой неравенствами |xx0| < a; |yy0| > b, то существует, по меньшей мере, одно решение y=y(x), определённое в окрестности |xx0| < h, где h > 0.

При использовании численных методов выполняется замена отрезка [x0,X] – области непрерывного изменения аргумента x множеством wh, состоящего из конечного числа точек x0<x1<...<xn=X – сеткой.

При этом xi  называют узлами решётки.

Задача Коши, определённая ранее на непрерывном отрезке [x0,X], заменяется её дискретным аналогом – системой уравнений, решая которую можно последовательно найти значения y1,y2,...,yn – приближённые значения функции в узлах сетки.

                                


1.1. Метод Эйлера

Данный метод, как сказано выше, является одношаговым. Табулирование функции происходит поочередно в каждой точке. Для расчёта значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

Пусть дано дифференциальное уравнение первого порядка

                               y`=f(x,y)

с начальным условием

                               y(x0)=y0.

Выберем шаг h и введём обозначения:

xi=x0+i*h и yi=y(xi), где i=0,1,2,...,

                                                  xi- узлы сетки,

                                                  yi- значение интегральной функции в узлах.

Иллюстрации к решению приведены на рисунке 2.

Проведём прямую АВ через точку (xi,yi) под углом  α. При этом

                              tgα=f(xi,yi)      (1)

В соответствии с геометрическим смыслом задачи, прямая АВ является касательной к интегральной функции. Произведём замену точки интегральной функции точкой, лежащей на касательной АВ.

Тогда y i+1=yi+Δy (2).

Из прямоугольного треугольника АВС tgα= Δy/h (3).

Приравниваем правые части (1) и (3). Получим Δy/h= f(xi,yi).

Отсюда Δy= f(xi,yi)*h.

Подставим в это выражение формулу (2), а затем преобразуем его. В результате получаем формулу расчёта очередной точки интегральной функции:

y i+1=yi+ h*f (xi,yi)            (4).

Из формулы (4) видно, что для расчёта каждой следующей точки интегральной функции необходимо знать значение только одной предыдущей точки. Таким образом, зная начальные условия, можно построить интегральную кривую на заданном промежутке.

                          

     Рисунок 2. Метод Эйлера

Метод Эйлера – один из простейших методов численного решения ОДУ. Но существенным его недостатком является большая погрешность вычислений. На рисунке 2 погрешность вычислений дляi-го шага обозначена ε. С каждым шагом погрешность вычислений увеличивается.

График решения дифференциального уравнения

Решение дифференциального уравнения.

1 Находим точку А по координатам (x0,y0) = (1,4)

2 Вычисляем угол 

tgα=f(xi,yi)

f(xi,yi)= y^2*ln(x)-y)/x

f(xi,yi)= -4

α=arctg( f(xi,yi))= -76’

3 Проводим касательную от точки А под углом α            

4 Находим точку В на прямой с координатами (x1,y1) где x1 = x0 + h , рассчитываем координату  y1 по формуле y i+1 = yi + h * f ( xi , y i).  y1 = 3,6

5 Вычисляем угол  в точке В(1,1;3,6)

tgα=f(xi,yi)

f(xi,yi)= y^2*ln(x)-y)/x

f(xi,yi)= -2,15

α=arctg( f(xi,yi))= -65’

6 Проводим касательную от точки В под углом α1             


1.2. Метод РунгеКутта 

Пусть дано дифференциальное уравнение первого порядка

                               y`=f(x,y)

с начальным условием

                               y(x0)=y0.

Выберем шаг h и введём обозначения:

xi=x0+i*h и yi=y(xi), где i=0,1,2,...,

xi- узлы сетки,

yi- значение интегральной функции в узлах.

Проведём решение в несколько этапов.

  1.  Обозначим точки: A(xi,yi), B(xi+1,yi+1), C, D, E.
  2.  Через точку А проведём прямую под углом α, где tg α = f(xi,yi).
  3.  На прямой найдём точку В. Через точку В проведём прямую под углом α = -73, где tg α1 = f(xi+h/4, yi+h/4*f(xi,yi).
  4.  Найдём точку С на прямой В и через неё проведём прямую под углом α = -71, где

tg α = f(xi+h/2, yi+h/2*f(xi,yi)).

И так же находим остальные точки D c α = -68  и E c  α = -65

  1.  По примеру, описанному выше, построим прямую, которая пересечётся с прямой x = xi+1. Эта точка и будет решением дифференциального уравнения при x = xi+1.  

Согласно методу Рунге – Кутта четвёртого порядка, последовательные значения yi искомой функции y определяется по формуле:

 y i+1=yi+Δy,

где

Δy=(k1+2*k2+2*k3+k4)/6,  i=0,1,2,...

а числа k1(i),k2(i),k3(i),k4(i) на каждом шаге вычисляются по формулам:

k1=h*f(xi,yi)

k2 =h*f(xi+h/2,yi+k1/2)

k3=h*f(xi+h/2,yi+k2/2)

k4 =h*f(xi+h,yi+k3)

Это явный четырёхэтапный метод четвёртого порядка точности.

                                

Методы Рунге – Кутта легко программируются и обладают значительной точностью и устойчивостью для широкого круга задач.

На рисунке 6 приведена блок-схема процедуры RUNGE(X0, XK, Y0, N, Y) для решения задачи Коши описанным выше методом Рунге – Кутта.

Рисунок 6. Блок-схема процедуры RUNGE

На рисунке 7 приведена блок-схема алгоритма основной программы для решения задачи Коши и получения результатов с фиксированным количеством отрезков разбиения N. В основной программе происходит обращение к процедуре RUNGE(X0, XK, Y0, N, Y), вычисляющей значения искомой функции yj в точках xj методом Рунге – Кутта.

Исходными данными в данной задаче являются:

X0, XK – начальное и конечное значения независимой переменной;

Y0 – значение y0 из начального условия  y(x0) = y0;

N – количество отрезков разбиения.

Результаты работы программы выводятся в виде двух столбцов:

X – массив значений узлов сетки;

Y – массив значений искомого решения в соответствующих узлах сетки.

Рисунок 7. Блок-схема алгоритма основной программы для решения задачи Коши с фиксированным количеством отрезков разбиения N


2. Блок-схемы

2.1 Блок-схема программы



2.2 Блок-схема алгоритма функции

2.3 Блок-схема метода Эйлера

2.4 Блок-схема общего решения и поиска

максимальных значений


2.5 Блок-схема метода Рунге-Кутта 4 порядка

3.Виды, формы

3.1. Начальная форма


3.2. Конечная форма

4. Программа для решения дифференциального уравнения в Visual Basic

Dim x(), e(), em(), o() As Single

Private i, n As Integer

Private x0, xk, y0, h, miny, maxy, minx, maxx As Single

Function f(x, y) As Single

p = Log(x) / Log(2.718282)

f = (y ^ 2 * p - y) / x

End Function

Private Sub Eiler()

ReDim x(n + 1)

ReDim e(n + 1)

e(0) = y0

For i = 0 To n

x(i) = Round(x0 + (i * h), 3)

e(i + 1) = Round(e(i) + h * f(x(i), e(i)), 3)

Next i

End Sub

Private Sub RungeK4()

ReDim x(n + 1)

ReDim em(n + 1)

em(0) = y0

For i = 0 To n

x(i) = Round(x0 + i * h, 3)

 k1 = h * f(x(i), em(i))

 k2 = h * f(x(i) + (h / 2), em(i) + (k1 / 2))

 k3 = h * f(x(i) + (h / 2), em(i) + (k2 / 2))

 k4 = h * f(x(i) + h, em(i) + k3)

 k = (k1 + 2 * k2 + 2 * k3 + k4) / 6

em(i + 1) = Round(em(i) + k, 3)

Next i

End Sub

Private Sub Obhee()

ReDim x(n + 1)

ReDim o(n + 1)

maxy = y0

miny = y0

maxx = x0

minx = x0

p = Log(x0) / Log(2.718282)

  c = (1 / (x0 * y0)) - (1 / x0) - (p / x0)

For i = 0 To n

x(i) = Round(x0 + i * h, 3)

p = Log(x(i)) / Log(2.718282)

o(i) = (1 / (1 + p + c * x(i)))

Next i

End Sub

Private Sub Command1_Click()

x0 = Val(Text1.Text)

y0 = Val(Text2.Text)

xk = Val(Text3.Text)

h = Val(Text4.Text)

n = Round((xk - x0) / h)

MSFlexGrid1.Cols = 4

MSFlexGrid1.Rows = n + 2

MSFlexGrid1.TextMatrix(0, 0) = "x"

MSFlexGrid1.TextMatrix(0, 1) = "Общее решение"

MSFlexGrid1.TextMatrix(0, 2) = "Эйлер"

MSFlexGrid1.TextMatrix(0, 3) = "Рунге-Кутт"

Eiler

RungeKutta

Obhee

For i = 0 To n

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(o(i))

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(e(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(em(i))

Next i

minx = x(0)

maxx = x(n)

miny = o(0)

maxy = o(n)

If e(n) > o(n) Then maxy = e(n)

If em(n) > o(n) Then maxy = em(n)

If e(n) > em(n) Then maxy = e(n)

Label10.Caption = Str(miny)

Label11.Caption = Str(maxy)

Label8.Caption = Str(minx)

Label12.Caption = Str(maxx)

Picture1.Cls

kx = (4000 - 700) / (xk - x0)

ky = (5000 - 6000) / (maxy - miny)

For i = 0 To n - 1

z1 = (720 + (x(i) - x0) * kx)

z2 = (1000 - (e(i) - miny) * ky)

z3 = (720 + (x(i + 1) - x0) * kx)

z4 = (1000 - (e(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4), vbBlue

Next i

For i = 0 To n - 1

z1 = (720 + (x(i) - x0) * kx)

z2 = (1000 - (em(i) - miny) * ky)

z3 = (720 + (x(i + 1) - x0) * kx)

z4 = (1000 - (em(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4), vbGreen

Next i

For i = 0 To n - 1

z1 = (720 + (x(i) - x0) * kx)

z2 = (1000 - (o(i) - miny) * ky)

z3 = (720 + (x(i + 1) - x0) * kx)

z4 = (1000 - (o(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4), vbRed

Next i

End Sub

Private Sub Command2_Click()

End

End Sub

5. Решение задачи в MathCadе


Заключение

В данной курсовой работе я рассматривал два метода решения  дифференциального уравнения, а именно Метод Эйлера и Рунге-Кутта 4 порядка. Эти методы были рассчитаны путем вычисления через программу Visual Basic и MathCadе.

         В связи с полученными данными, вычисленными через программы выяснилось, что точки графиков функции не совпадают, то есть имеется погрешность с каждым увеличением шага или с вычислением последующей точки.

С точки зрения вычислений данного дифференциального уравнения, на мой взгляд, проще решается с помощью метода Эйлера, но при этом возникает небольшая погрешность.


 

А также другие работы, которые могут Вас заинтересовать

18122. Java Persistence API 77.5 KB
  PAGE 1 Тема 7: Java Persistence API Java Persistence API забезпечує object/relational mapping для роботи з реляційними даними в Javaпрограмах. Java Persistence складається з трьох частин: Java Persistence API Мови запитів Query language Метаданих для object/relational mapping Entities Entity – це легковісний ...
18123. JavaServer Faces (JSF) 174 KB
  Тема 8: JavaServer Faces JSF Технологія JavaServer Faces – це серверний framework для webпрограм що розробляються на Java. Основні компоненти JavaServer Faces такі: – API для представлення UIкомпонентів і керування їх станом; обробки подій; серверної валідації; конверсії даних; визначення навігації по
18124. Spring Framework 86 KB
  Тема 9: Spring Framework Spring є Java framework який надає розробнику сукупність сервісів для побудови масштабованих J2EE програм. Spring реалізує в собі концепцію MVC. Inversion of Control IoC Іноді можна почути терміни Inversion of Control та Dependency Injection як взаємозамінні але це не зовсім вірно. Inversion of Co...
18125. Struts Framework 175 KB
  Тема 10: Struts Framework Apache Struts – це opensource framework для розробки Java EE web програм. В ньому використовується і розширюється Java Servlet API та надається базова інфраструктура для реалізації програми на основі шаблону проектування design pattern MVC. Базова платформа для використання Struts 2 вклю...
18126. Предмет та задачі фізичної електроніки 246.27 KB
  Предмет та задачі фізичної електроніки Що таке фізична електроніка Що за розділ фізики Так от: це наука котра займається вивченням властивостей електронів та іонів при швидкостях набагато менших швидкості світла. Фізична електроніка вивчає рух електронів та іонів у в...
18127. Розподіл електронів в твердому тілі за енергіями 879.5 KB
  Розподіл електронів в твердому тілі за енергіями Спочатку цей розподіл було знайдено чисто експериментально Фермі та Діраком. Задача полягає в тому щоб знайти число електронів що мають енергії в інтервалі Е Е dE тобто знайти функціюзакон розподілу електронів за е
18128. Термоелектронна емісія (ТЕЕ) 160.77 KB
  Термоелектронна емісія ТЕЕ ТЕЕ є випромінювання електронів розжареними тілами. Джерело енергії збудження електронів – теплова енергія гратки. Густина струму термоемісії для кожного тіла є універсальною функцією параметри якої залежать від природи цього тіла структ...
18129. Вплив зовнішнього електричного поля на термоемісію катоду 188.56 KB
  Вплив зовнішнього електричного поля на термоемісію катоду Для того щоб визначити струм емісії катода необхідно зібрати елементарну схему що містить вікуумний діод ВД й джерела живлення з вимірювальними приладами. Діод має пряморозжарюваний W катод 1 і анод 2. ...
18130. Вплив КРП на ВАХ дiоду 200.71 KB
  Вплив КРП на ВАХ дiоду На практицi зустрiчається декiлька випадкiв впливу КРП на ВАХ. Маємо вакуумний дiод у якого анод i катод виготовлено з одного матерiалу наприклад з вольфраму тобто еа=ек. В зв€язку з цим маємо таку картину. Рiвнi Фермi Eok=Eoa. Значить Vкрп=0. Ро