67749

АРИФМЕТИКА МНОГОЧЛЕНОВ

Лабораторная работа

Математика и математический анализ

Множество всех многочленов от одной переменной над полем образует коммутативное кольцо с единицей. В кольце многочленов имеет место алгоритм деления с остатком аналогичный тому который имеет место для целых чисел. Если для многочленов и в кольце существуют такие многочлены и что многочлен можно представить...

Русский

2014-09-14

461 KB

5 чел.

PAGE   \* MERGEFORMAT 5

Лабораторная работа № 4

Тема: АРИФМЕТИКА МНОГОЧЛЕНОВ

Цель работы – изучить основные понятия, необходимые для обоснования модульной арифметики и операций в расширениях конечных полей.

Краткие теоретические сведения.

1. Многочлены над полем.

Многочлен над полем  – это функция вида , где , . Целое число  называется степенью многочлена и обозначается . Числа  называются коэффициентами,  – свободным членом. Областью изменения аргумента  является поле . Умножение и сложение являются операциями в поле. Константы (элементы поля ) рассматриваются как многочлены нулевой степени.

Множество  всех многочленов от одной переменной над полем  образует коммутативное кольцо с единицей. Над многочленами можно производить операции сложения и умножения, причем эти действия имеют все свойства операций в коммутативном кольце (ассоциативность, коммутативность, дистрибутивность, существование нулевого элемента, и т. д.). Любой ненулевой элемент поля   можно рассматривать как многочлен нулевой степени, нуль поля  также принадлежит к многочленам, его называют нулевым многочленом. Роль единицы кольца  играет единичный элемент 1 поля , который рассматривается как многочлен нулевой степени.

Если , по многочлен называется приведённым (нормированным, унитарным). Любой многочлен над полем можно привести к нормированному, умножив его на , но в кольце это не так, поскольку не для всех элементов существуют обратные.

В кольце многочленов  имеет место алгоритм деления с остатком, аналогичный тому, который имеет место для целых чисел.

Определение. Если для многочленов  и  в кольце  существуют такие многочлены  и , что многочлен  можно представить в виде

где степень многочлена  не больше степени многочлена  (), то говорят, что многочлен  делится на многочлен  с остатком.

2. Делимость многочленов

При делении многочленов с остатком применяют ту же терминологию, что и для целых чисел: многочлен  называется делимым, многочлен  – делителем, многочлен  – неполным частным, а многочлен  – остатком.

На практике деление с остатком для двух заданных многочленов выполняется аналогично делению многозначных чисел – "углом".

В частном случае, когда делитель  является приведённым линейным двучленом, т.е. , применяется схема Горнера.

Положим

.

Приравняв коэффициенты в обеих частях последнего равенства, получим:

Обычно процесс деления на линейный двучлен оформляют в виде таблицы:

3. Алгоритм Евклида для многочленов

Многочлен  называется общим делителем многочленов  и , если он является делителем каждого из них.

Общий делитель многочленов  и , который делится на любой общий делитель этих многочленов, называется наибольшим общим делителем (НОД) многочленов  и . Обозначается символом  или .

Обычно в качестве  выбирается нормированный многочлен.

Два многочлена  и  называются взаимно простыми, если каждый их общий делитель является многочленом нулевой степени (отличающейся от нуля константой).

Для определения НОД двух многочленов используется аналог классического алгоритма Евклида для чисел.

Пусть заданы два многочленов  и , причем будем считать, что степень  больше степени . Выполним последовательно ряд операций деления с остатком, который описывается следующей системой равенств:

;

;

;

....................................................

;

.

Последний отличающийся от нуля остаток и будет наибольшим общим делителем многочленов  и .

Теорема (о линейном представлении НОД двух многочленов). Для любых двух многочленов и  из  существует наибольший общий делитель , который можно представить в виде:

,

где .

Два многочлена  и  являются взаимно простыми тогда и только тогда, когда существуют многочлены  такие, что 

.

Для определения линейного представления НОД двух многочленов используется аналог расширенного алгоритма Евклида для чисел.

4. Многочлены над полем .

Сложение и умножение в поле  определяется следующими таблицами

+

0

1

х

0

1

0

0

1

0

0

0

1

1

0

1

0

1

Если многочлен  неприводим, то остатки от деления всех многочленов из  на  образуют поле  относительно операций умножения и сложения многочленов с коэффициентами из . Поле  является расширением . Количество его элементов равно . Равенство в поле  является сравнением вида . Элемент, обратный  вычисляется как многочлен  из уравнения , поскольку все многочлены степени меньшей  взаимно просты с .

Если многочлену , , поставить в соответствие вектор , то операции в поле  можно интерпретировать как операции над векторами – расширенными числами, правые крайние координаты которых принадлежат .

5. Неприводимость многочленов

Многочлен ненулевой степени называется неприводимым, если он делится только на константы и сам на себя.

Неприводимые многочлены играют важную роль в устройстве кольца , т.к. каждый многочлен из  может быть представлен, причём единственным образом, в виде произведения неприводимых многочленов. Эти неприводимые многочлены являются аналогами простых чисел, через произведение которых можно выразить любое целое число.

Как простых чисел в , так и неприводимых многочленов над произвольным полем  существует бесконечное множество.

Над любым конечным полем существуют неприводимые многочлены сколько угодно высокой степени.

Порядок выполнения работы.

1. Изучить краткие теоретические сведения о свойствах многочленов.

2. Пользуясь схемой Горнера, вычислить :

  1.  ,   ;
    1.  ,   ;
    2.  ,   ;
    3.  ,  ;
    4.  ,   ;
    5.  ,  ;
    6.  , ;
    7.  , ;
    8.  ,   ;
    9.  ,  ;
  2.  ,  ;
  3.  ,  ;
  4.  ,  ;
  5.  ,  ;
  6.  ,  ;
  7.  ,  ;
  8.  ,  ;
  9.  ,   ;
  10.  ,  ;
  11.  ,  ;
  12.  ,  ;
  13.  ,   ;
  14.  ,  ;
  15.  ,  ;
  16.  , .

3. С помощью расширенного алгоритма Евклида найти линейное представление наибольшего общего делителя многочленов  и :

  1.  ,
  2.  ,
  3.  ,
  4.  ;
  5.  ,
  6.  ,
  7.  ,
  8.  ,
  9.  ,
  10.  ,
  11.  
  12.  
  13.  
  14.  
  15.  
  16.  
  17.  
  18.  
  19.  
  20.  
  21.  
  22.  ;
  23.  ;
  24.  ;
  25.  .

4. С помощью расширенного алгоритма Евклида найти линейное представление наибольшего общего делителя многочленов  и  над полем .

1

2

3

4

5

6

7

8

9

10

11

12

13

4

5

8

6

5

6

5

7

4

6

6

7

7

3

4

4

1

3

5

1

3

2

3

4

2

4

14

15

16

17

18

19

20

21

22

23

24

25

6

8

6

7

8

9

8

7

9

8

5

8

2

5

5

6

3

5

2

5

4

1

2

5

4. Составить отчет, приобщив туда полученные результаты.

Требования к отчету.

В отчете должны быть приведены:

1. Краткие сведения об изученных свойствах многочленов.

2. Решения своего варианта с необходимыми пояснениями.

3. Ответы на контрольные вопросы.

Контрольные вопросы.

  1.  Что такое многочлен?
    1.  Что такое многочлен над полем?
      1.  Как найти НОД двух многочленов?
      2.  Как найти линейное представление НОД двух многочленов?
      3.  Почему вычеты по модулю приводимого над  многочлена не образуют поле?
      4.  Почему операции сложения и вычитания в расширении поля  совпадают?


 

А также другие работы, которые могут Вас заинтересовать

23107. Прискорювачі заряджених частинок та принципи їх роботи 62.5 KB
  При непрямих методах прискорення електричне поле індукується змінним магнітним полем або використовується змінне електричне поле у вигляді біжучих або стоячих хвиль. Ідея прискорення заряджених частинок електричним полем яке породжується змінним магнітним полем. Основна складова – потужний електромагніт обмотка якого живиться змінним струмом з частотою сотні МГц. При зміні маг потока з’являється вихрове ел поле і на кожний електрон в камері діє сила eE.
23108. Общая характеристика экономики государственного сектора 262 KB
  Под государственным сектором экономики страны понимают сектор, представляющий и обслуживающий интересы всего населения. Государство является основным институтом, организующим и координирующим взаимоотношения граждан и социальных групп в стране и обеспечивающим условия для их совместной деятельности
23109. Сучасні уявлення про ядерні сили. Моделі атомного ядра 136.5 KB
  За сучасними поглядами сили між нуклонами є виявом сильної кваркглюонної взаємодії. Така частинканосій сильної міжкваркової взаємодії називається глюоном. При взаємодії глюонів з кварками колір кварків змінюється. Аромат кварків їхній електричний та баріонний заряди не змінюються тобто колір є найбільш важливою властивістю кварків при взаємодії.
23110. Теорія молекули водню. Обмінна взаємодія 59.5 KB
  Теорія молекули водню. Відносне розміщення цих центрів атомних ядер визначає просторрову конфігурацію молекули при цьому стійкому рівноважному стану відповідає мінімум енергії молекули. Відносний рух ядер коливання ядер і обертання молекули як цілої – це окремі задачі. Таким чином для Н2 хвильове рівняння можна записати у вигляді: де V – потенціальна енергія молекули V=V1V2 – енергія першого ел.
23111. Методи визначення роботи виходу електрона 973.5 KB
  Методи визначення роботи виходу електрона. Енергію яку потрібно виконати для вибиття електрону з металу або рідини у вакуум називається роботою виходу. Еіон енергія іонізації А – робота виходу електрона за межі поверхні тіла – кін. Величина роботи виходу A в значній мірі залежить від чистоти поверхні емітера.
23112. Досліди Франка і Герца по визначенню потенціалів іонізації 52 KB
  При непружніх зіткненнях електрона з атомом відбувається передача енергії від електрона атому. Якщо внутрішня енергія атома змінюється неперервно то атому може бути передана будьяка порція енергії. Якщо ж стани атома дискретні то його внутрішня енергія при зіткненні з електороном повинна змінюватись також дискретно – на значення що дорівнюють різниці внутрішньої енергії атома в стаціонарних станах. Отже про непружньому зіткненні електрон може передати атому лише певні значення енергії.
23113. Методи отримання низьких температур 31.5 KB
  Для отримання та утримання низьких температур звичайно використовують зріджені гази. В посудині Дюара яка містить зріджений газ що знаходиться під атмосферним тиском. 1 Для отримання зріджених газів використовують спеціальні пристрої в яких сильно стиснутий газ при адіабатичному розширенні охолоджується що видно з рівняння адіабати . Але таким способом не можна отримати температури нижчі від температури конденсації газу.
23114. Методи визначення роботи виходу електрона 40.5 KB
  Методи визначення роботи виходу електрона. Енергію яку потрібно прикласти для вибиття електрону з металу або рідини у вакуум називається роботою виходу. Еіон енергія іонізації А – робота виходу електрона за межі поверхні тіла – кін. Величина роботи виходу A в значній мірі залежить від чистоти поверхні емітера.
23115. ОБЩЕСТВО КАК ПРЕДМЕТ ФИЛОСОФСКОГО АНАЛИЗА 81 KB
  Любовь к обществу – естественное чувство человека, развиваемое и культивируемое разумом. Создав человека существом, обладающим способностью чувствовать, природа вдохнула в него любовь к наслаждениям и страх перед страданием. Общество является произведением природы, поскольку именно природа обусловливает жизнь человека в обществе