67761

Исследование модели шинной ЛВС со случайным доступом

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Исследование особенностей построения и функционирования шинной ЛВС со случайным методом доступа и определение основных характеристик сети. Определить основные характеристики ЛВС шинной топологии со случайным методом доступа на основе исследования аналитической модели сети. Исследовать следующие зависимости...

Русский

2014-09-14

1.32 MB

3 чел.

Министерство Образования Российской Федерации

Марийский Государственный Технический Университет

Кафедра ИВС

Лабораторная работа №1

Исследование модели шинной ЛВС

со случайным доступом

Вариант №9

Выполнил:

студент группы ВМ-41

Золин Е.В.

Проверила:

Васяева Н.С.

Йошкар-Ола

2005


1. Цель работы

Исследование особенностей построения и функционирования шинной ЛВС со случайным методом доступа и определение основных характеристик сети. В результате выполнения лабораторной работы студент получает знания по структуре, форматам кадров и протоколам физического и канального уровней для ЛВС данного типа и навыки по расчёту основных характеристик для сетей с различными параметрами.

2. Задание

2.1. Изучить структуру и принципы построения ЛВС с шинной топологией со случайным методом доступа к моноканалу.

2.2. Изучить особенности работы шинных ЛВС со случайным методом доступа на основе протоколов канального и физического уровней эталонной модели ВОС.

2.3. Определить основные характеристики ЛВС шинной топологии со случайным методом доступа на основе исследования аналитической модели сети.

2.4. Исследовать следующие зависимости:

а) нормированного времени доставки сообщений от загрузки сети. Значение R изменять в диапазоне (0..1)  с шагом 0,1;

б) нормированного времени доставки сообщений от длины сети. Значение S изменять в диапазоне (0..50-80 км)  с шагом 1;

в) нормированного времени доставки сообщений от числа станций в сети. Значение М изменять в диапазоне (0..150-400)  с шагом 1;

г) нормированного времени доставки сообщений от скорости модуляции сигнала. Значение В изменять в диапазоне (1..10106-100106 бит/с)  с шагом 1106;

д) пропускной способности сети от средней длительности кадра. Значение  изменять в диапазоне (1010-6.. 100010-6 c)  с шагом 20 мкс;

е) пропускной способности сети от длины сети С(S). Значение S изменять в диапазоне (0..50-100 км)  с шагом 1;

ж) пропускной способности сети от скорости модуляции сигнала С(В). Значение В изменять в диапазоне (1..10106-100106 бит/с)  с шагом 10106.

3. Исходные данные для расчёта ЛВС

Протяжённость сети S=1.5 км (максимальное расстояние между двумя станциями).

Скорость модуляции B=10 Мбит/с. Число станций M=45.

Среднее  значение  интенсивности  сообщений, поступающих от каждой станции λср=10 с-1.

Скорость распространения сигнала по кабелю связи V=2,2*105 км/с.

Максимальное число ретрансляторов между двумя станциями np=2.

Максимальная задержка одного ретранслятора в битах Lp=15 бит.

Средняя длина информационной части кадра Lи=1400 бит.

Средняя длина служебной части кадра Lс=310 бит.

4. Расчёт ЛВС

Рассчитаем ЛВС шинной топологии со случайным методом доступа. На основании указанных исходных данных произведём расчёт времени задержки в сети и определим её пропускную способность.

  1.  Время распространения сигнала по кабелю между двумя наиболее удалёнными станциями

мкс

  1.  Максимальное время задержки сигналов в ретрансляторах

  1.  Полное время распространения сигнала

  1.  Длительность информационной части кадра

  1.  Длительность служебной части кадра

  1.  Суммарная средняя длительность кадра

  1.  Коэффициент вариации времени передачи кадров сообщений

  1.  Суммарное значение интенсивности поступления сообщений

  1.  Суммарный коэффициент загрузки

  1.  Коэффициент дальнодействия,  с учётом времени задержки в ретрансляторах

  1.   Относительно время задержки доставки сообщения

  1.  Время передачи

  1.  Пропускная способность канала

  1.  Предельно допустимое значение суммарной интенсивности, при которой загрузка достигает пропускной способности

  1.  Минимальное время задержки доставки (при R=0)

5. Исследование зависимостей

а) нормированного времени доставки сообщений от загрузки сети;

Для параметра R ясно видно пороговое значение, после которого сообщения перестают доставлятся (время доставки становится почти бесконечным либо отрицательным). В случае с R этот порог лежит в пределах 0.7-0.8 и связан с моноканальностью, то есть в загруженной сети постоянно появляются ошибки, связанные с занятостью единственного канала.


б) нормированного времени доставки сообщений от длины сети;

Для параметра S ясно видно пороговое значение, после которого сообщения перестают доставлятся (время доставки становится почти бесконечным либо отрицательным). Для S это промежуток 67-70 км, что явно не соотносится с указанным для коаксиала максимумом в 1500 метров. Впрочем, это может быть и не стандартный коаксиальным кабель.

в) нормированного времени доставки сообщений от числа станций в сети.

При увеличении числа станций время доставки сообщения растет кубически, достаточно медленно. Условным пределом можно назвать 250 станций - время доставки увеличивается в  два раз относительно 50 станций, в то время как для 360 станций увеличение относительно 50 станций достигает пяти.


г) нормированного времени доставки сообщений от скорости модуляции сигнала;

Для скорости модуляции существует оптимальный минимум, это 20*10^6 бит/c, причем стоит отметить, что передача на скорости ниже 6*10^6 бит/c значительно увеличивает время доставки, это связано с длиной пакета; аналогично использование модуляции выше 80*10^6 бит/c становится не оптимальным, но не так значительно, как в в первом случае.

д) пропускной способности сети от средней длительности кадра;

Из графика зависимости  следует, что с увеличением средней длительности кадра пропускная способность канала увеличивается и стремится к 1. Это связано с тем, что при малой длительности кадра пропусная способность сети используется неэффективно, т.к. при уменьшении длительности кадра межкадровый интервал остаётся неизменным и будет занимать долю времени сравнимую с длительностью кадра.
е) пропускной способности сети от длины сети
С(S);

Из графика зависимости C(S) следует, что с увеличением длины сети пропускная способность канала уменьшается и стремится к 0. Поскольку время распространения сигнала в сети конечно, то при увеличении длины сети больше вероятность конфликта при передаче сообщений от двух удалённых узлов.

ж) пропускной способности сети от скорости модуляции сигнала С(В);

Из графика зависимости C(B) следует, что с увеличением скорости модуляции сигнала пропускная способность канала уменьшается и стремится к 0. При увеличением скорости модуляции и неизменной длине сети уменьшается длительность кадра, при этом возникает так называемый эффект «короткого кадра», приводящий к увеличению числа коллизий.


 

А также другие работы, которые могут Вас заинтересовать

24080. Биологическая ценность белков 30 KB
  Для оценки состояния обмена белков используется понятие азотистый баланс. Азот остается в организме и расходуется на синтез белков. Встречается при голодании белковой недостаточности тяжелых заболеваниях когда происходит интенсивный распад белков тела. Биологическая ценность белков.
24081. Переваривание белков. Пути превращения аминокислот в печени 105 KB
  Расщепление белков происходит при участии нескольких групп ферментов: Экзопептидазы – катализирует разрыв концевой пептидной связи с образованием одной какойлибо аминокислоты. В результате расщепления образуются свободные аминокислоты которые затем подвергаются всасыванию. Аминокислоты всасываются свободно с ионами натрия. Некоторые аминокислоты обладают способностью конкурентно тормозить всасывание других аминокислот: Лизин тормозит всасывание аргинина.
24082. Токсическое действие аммиака-инактивация альфа-кетоглутарата в цикле кребса,энергетическое голодание,к которому чувствителна очень нервная ткань 57.5 KB
  Возможны 4 типа дезаминирования: Восстановительное RCHCOOH RCH2COOH NH3 NH2 Гидролитическое RCHCOOH RCHCOOH NH3 NH2 OH Внутримолекулярное RCH2CHCOOH RCH=CHCOOH NH3 NH2 Окислительное RCHCOOH RCCOOH NH3 NH2 O Окислительное дезаминирование бывает 2 видов: прямое и непрямое трансдезаминирование. R R1 R R1 HCNH2 C=O C=O HCNH2 COOH COOH COOH COOH Реакция трансаминирования...
24083. Реакция трансаминирования 36.5 KB
  R R1 R R1 HCNH2 C=O C=O HCNH2 COOH COOH COOH COOH Реакция трансаминирования обратима она катализируется ферментами – аминотрансферазами. Наиболее часто акцептором NH2групп служит 2оксоглутарат кетоглутарат реакция приводит к образованию глутаминовой кислоты: СН3 COOH CH3 COOH АЛТ НСNH2 CH2 C=O CH22 COOH CH2 COOH CHNH2 ...
24084. Декарбоксилирование аминокислот 57 KB
  Серотонин обладает сосудосуживающим действием участвует в регуляции артериального давления t тела дыхания медиатор нервных процессов. Он образуется в области воспаления участвует в развитии аллергических реакций.
24085. Пути обезвреживания аммиака 64 KB
  Уровень аммиака в норме в крови не превышает 60 мкМоль литр. Для кроликов концентрация аммиака 3 мМоль литр является летальной. В организме существует 4 пути обезвреживания аммиака.
24086. Биосинтез мочевины 108.5 KB
  Биосинтез мочевины. С мочой за сутки выводится 2530 г мочевины. Синтез мочевины идет в печени. Цикл мочевины открыли Ганс Кребс и Курт Хенселайт 1932г.
24087. Обмен глицина и серина 203 KB
  Глутатион Сер Тканевые белки Глюкоза Муравьиная кислота Гли Липиды Гиппуровая кислота Гем Креатин Тре Пурины ДНК РНК Желчные кислоты Глицин участвует в образовании гема: СООН СН2NH2 HSKoA COOH B6 СН2 COOH CH2 CO2 аминолевули СН2 натсинтаза CH2 COSKoA C=O CH2NH2 аминолевулиновая кислота В качестве кофермента аминолевулинансинтаза содержит витамин В6. В почках образуются гуанидинуксусная кислота: NH2...
24088. Обмен цистеина и метионина 173.5 KB
  Обмен цистеина и метионина. В молекулах белка обнаружены 3 серосодержащие аминокислоты: метионин цистеин цистин. Цистеин в организме синтезируется из метионина. Функции цистеина: Цистеин участвует в образовании цистина: При образовании цистина возникает дисульфидная связь SS между двумя полипептидными цепями что способствует стабилизации третичной структуры белка.