67770

ИЗУЧЕНИЕ ЗАКОНА БОЙЛЯ-МАРИОТТА

Лабораторная работа

Физика

Термодинамической системой называется тело или сочетание нескольких тел, находящихся в тепловом контакте, свойства и поведение которых изучаются средствами термодинамики. Свойства любой системы и ее состояние описывается рядом физических величин, которые называются термодинамическими параметрами.

Русский

2014-09-14

4.17 MB

12 чел.

Лабораторная работа № 43

ИЗУЧЕНИЕ ЗАКОНА БОЙЛЯ-МАРИОТТА

Принадлежности: экспериментальная установка в сборе.

Цель работы:

  1.  Изучение закона Бойля-Мариотта.
  2.  Определение универсальной газовой постоянной.
  3.  Построение изотерм Амага для воздуха.

Введение. Термодинамической системой называется тело или сочетание нескольких тел, находящихся в тепловом контакте, свойства и поведение которых изучаются средствами термодинамики. Свойства любой системы и ее состояние описывается рядом физических величин, которые называются термодинамическими параметрами. Система, не обменивающаяся энергией с окружающими телами, называется изолированной. В термодинамике постулируется, что изолированная система рано или поздно приходит к термодинамическому равновесию и выйти из него самостоятельно (без внешнего воздействия) не может. В состоянии равновесия параметры системы имеют одинаковые значения во всех ее точках.

Рассмотрим термодинамическую систему – идеальный газ. Параметрами состояния газа являются его температура Т, давление р и объем V. Уравнение, связывающее параметры состояния между собой, называется уравнением состояния системы. Для идеального газа уравнением состояния является уравнение Менделеева-Клапейрона

,      (1)

где М – масса газа, – молярная масса, R – универсальная газовая постоянная.

При бесконечно медленном изменении параметров газ переходит из одного равновесного состояния в другое через ряд равновесных состояний. Такой термодинамический процесс называется равновесным или квазистатическим. Но бесконечно медленный процесс – это абстракция. Практически квазистатическим можно считать процесс, протекающий настолько медленно, что отклонение параметров системы от равновесных значений пренебрежимо малы.

В термодинамике особо выделяют такие процессы, в которых один из параметров поддерживается постоянным; их называют изопроцессами. Рассмотрим один из них – изотермический, в ходе которого сохраняется температура. Два других параметра идеального газа – давление и объем изменяются при этом так, что их произведение остается постоянным. Этот факт был обнаружен экспериментально Бойлем и Мариоттом и носит название закона Бойля-Мариотта

.      (2)

Кривая, определяемая этим уравнением, в координатах p,V является гиперболой и носит название изотермы. Однако по одному виду кривой на графике часто трудно определить, какую математическую кривую она представляет. Поэтому практикуется довольно распространенный прием спрямления зависимости. Для этого уравнение переписывается в таких переменных, в которых график представляет собой прямую линию. В случае изотермического процесса спрямление произойдет, если построить график зависимости произведения pV от давления (или объема). Такие графики в указанных координатах называются изотермами Амагá1. Если изотермы Амага представляют собой семейство прямых, параллельных оси р, следовательно произведение pV остается постоянным, закон Бойля-Мариотта выполняется, т.е. газ является идеальным.

Описание установки и методики измерений. Схематическое изображение экспериментальной установки приведено на рисунке. На стойке 1

закреплена U-образная трубка 2, один конец которой закрыт, а другой соединен шлангом 3 с манометром 4 и насосом 5. Трубка частично заполнена водой так, что в закрытом конце трубки находится некоторое количество воздуха. С помощью ручного насоса - груши на «жидкий поршень» можно оказывать раз-личное давление, которое передается воздушному столбику, представляющему собой в данном случае исследуемую термо-динамическую систему.

Манометр 4 сконструирован таким образом, что он показывает разность между давлением в месте его установки р2 и атмосферным, т.е. показания манометра рм– числа алгебраические. Таким образом, давление на выходе насоса выше атмосферного

.     (3)

Газ в закрытом колене подвергается изотермическому сжатию (или разрежению). Согласно закону Бойля-Мариотта (2) имеет место равенство

,     (4)

где р1 и V1  – давление и объем газа в закрытом колене  U-образной трубки,

     l – длина воздушного столбика в закрытом колене,

     S – сечение трубки, занятой воздушным столбиком.

Давление р1 отличается от указанного выше р2, так как в коленах U-образной трубки столбы воды находятся на разных уровнях. Давление р1 можно найти по закону Паскаля из следующего соотношения:

,

,

.        (5)

Теперь уравнение изотермического процесса (4) приобретает следующий вид (постоянная величина S включена в const.):  

.    (6)

В данной работе экспериментально проверяется справедливость равенства (6), полученного выше из закона Бойля-Мариотта для идеального газа.

Измерения. 

  1.   С  помощью линейки  измерьте длину воздушного столба L.Запишите над таблицей значения L, атмосферного давления pа и температуры  в лаборатории t.
  2.  При помощи ручного насоса-груши 5 установите на манометре 4 максимальное давление.
  3.  Запишите в таблицу показания манометра и длину воздушного столба l при данном давлении. Вследствие утечки воздуха из-за  негерметичности  воздушной магистрали давление будет непрерывно изменяться без Вашего участия. Используйте это явление для измерений. Когда стрелка манометра устанавливается на очередном делении его шкалы, записывайте в таблицу его показания  рм и длину воздушного столба в закрытом колене трубки 1. Проведите измерения на всех делениях шкалы по мере движения стрелки от максимального давления до нуля (не менее 8-10 измерений).

L =   (м) ,   pа=   (Па),  t =   

№ изм.

pм,

кгс/см2

pм,

Па

l,

м

p1 = pм + pа,

Па

V=S• l,

м3

1/V

Обработка результатов измерений. 

  1.  По формуле (5) вычислите  p1 = pм + pа , так как  ϱgh < pм и  pа .
  2.  По формуле V = S• l определите объем воздуха в закрытом колене трубки, где S – сечение трубки, S = πd2 /2, d = 3,15 мм - диаметр трубки.
  3.  Постройте графики:

1) зависимость  давления  p1 от объема V,  

2) зависимость  p1  от 1/V,

3) зависимость произведения  p1 l от p1.(для физиков)

  1.   Из графика зависимости   p1  от 1/V определите универсальную газовую постоянную R.

, где µ=0,029 кг/моль, m = ϱ•V масса газа, ϱ = 1,3 кг/м3 – плотность воздуха, Т = t+273 – температура, tg - из графика.

  1.  Сравните полученный результат с теоретическим значением.

Контрольные вопросы

  1.  Перечислите все изопроцессы. Почему для газа их три? Сформулируйте газовые законы для всех изопроцессов и запишите соответствующие уравнения.
  2.  Что такое идеальный газ? Запишите уравнение состояния идеального газа. Выведите уравнения изопроцессов как следствия уравнения состояния идеального газа. Можно ли атмосферный воздух назвать идеальным газом в условиях проведения данного исследования? Если – да, то на основании чего; если – нет, то почему.
  3.  Какую информацию об исследованной термодинамической системе содержат построенные Вами графики?
  4.  Можно ли утверждать, что Ваши опыты с газом проводились в изотермических условиях?

Список рекомендуемой литературы

1.Сивухин Д.В. Общий курс физики.Т 2. Термодинамика и молекулярная физика. М.: Физматлит, 2006. §7-8.

2.Кикоин А.К., Кикоин И.К. Молекулярная физика. М.: Наука, 1976. С.18-19; 32-39.

3. Савельев И.В. Курс общей физики. Т.1. Механика и молекулярная физика. СПб.: Лань, 2005.§87-89; 103.

4.Радченко И.В. Молекулярная физика. М.: Наука, 1965. С.20-26; 216-228.

1  Амага Эмиль (Amagat E.) – французский физик (1841-1915).

4

l

1

5

3

4

2

6


 

А также другие работы, которые могут Вас заинтересовать

2175. Прибыль и рентабельность ОАО Ухтанефтегазгеология 60.11 KB
  Общие сведения о прибыли и рентабельности предприятия. Прибыль и рентабельность на примере предприятия ОАО Ухтанефтегазгеология, основные сведения о предприятий.
2176. Расчет редуктора и его составных частей 60.11 KB
  Краткое описание редуктора и технология его сборки. Выбор электродвигателя. Кинематический и силовой расчет привода. Конструктивные размеры червяка, червячного колеса и корпуса. Подбор подшипников качения.
2177. Етапи створення та класифікація інформаційних систем 25.89 KB
  Основні етапи створення інформаційних систем (ІС). Класифікація ІС. Структура комп’ютерних ІС та класифікація їх задач.
2178. CALS-технологии. И интегрированные автоматизированные системы управления 160.34 KB
  Интегрированные автоматизированные системы управления КИП. Базовые технологии управления данным и информационные модели. Преимущества использования CALS, общие представления об интегрированной информационной среде (ИИС)
2179. Изменение требований к осуществлению надзора за соблюдением законодательства РФ в области образования, государственного контроля качества образования 64.21 KB
  Подготовка образовательного учреждения к выездной проверке в сфере образования. Прохождение образовательным учреждением плановой выездной проверки в сфере образования. Основания для проведения контроля (надзора) в области образования.
2180. Расчет редуктора и ведомого вала с его деталями 125.94 KB
  Целью работы является закрепление теоретических знаний, полученных в ходе изучения материала и приобретения навыков создания современных технических систем.
2181. Воспитательная система школы 953.79 KB
  Содействие развитию личности и формированию компетенций обучающихся через создание для этого благоприятных условий деятельности. Создание условий формирования образованной , свободной, культурной, конкурентоспособной личности обучающегося, способной к творчеству, созиданию, само регуляции , непрерывному образованию , к жизнедеятельности в условиях рыночных отношений.
2182. Отношенческо-коммуникативный компонент воспитательной системы школы 195.24 KB
  Воспитатель личностно значим для воспитанников. Воспитатель социально положительно ориентирован. Толерантность сторон; Компетентность воспитателя. Учет базовых ценностей взаимодействующих субъектов, социума. Взаимодействие не должно приносить вреда другим личностям, обществу; Воспитание на личном примере.
2183. Энергетические системы 806.76 KB
  Общие сведения об энергетических системах. Режимы и параметры системы и сети. Трансформатор с расщепленной обмоткой низшего напряжения. Совместный расчет режима сетей нескольких номинальных напряжений. Расчеты режима линий с двусторонним питанием при различающихся напряжениях источников питания (по концам).