67775

Преобразования Фурье

Лабораторная работа

Математика и математический анализ

ДПФ определяет спектр дискретной периодичной функции x(t). ДПФ – обратимая операция отображения временных рядов в область частот. Свойства ДПФ аналогичны свойствам интегрального преобразования Фурье. ДПФ определяет линейчатый спектр периодичной дискретизации функции времени, а обратное дискретное...

Русский

2014-09-14

101.5 KB

10 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАРИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ИВС

Лабораторная работа

по дисциплине: ТДЛС

«Преобразования Фурье»

    Выполнили: студенты группы ВМ-41

Лобанов С.М.

Полушкина О.В

    Проверила: Малашкевич И.А.

Йошкар-Ола

2003


Содержание

[0.1] Лабораторная работа

[1] Дискретное преобразование Фурье.

[2] Обратное ДПФ,

[3] Быстрое преобразование Фурье (БПФ).

[4] Вычисление БПФ посредством децимации по времени.


Преобразование Фурье (обобщение рядов Фурье).

Преобразование Фурье позволяет получать спектральные характеристики не периодических сигналов.

Пусть есть абсолютно интегральный сигнал S(t), удовлетворяющий условию:

    (1)

тогда прямое преобразование Фурье оценивается через спектральную плотность сигнала:

 (2)

Обратное преобразование Фурье оценивается по спектральной плотности, можно найти сигнал во временной области.

Сравним спектральную плотность одиночного импульса, сосредоточеннного

на интервале от 0 до Т:

    (3)

и спектр периодической функции, которая образуется из смещенных на время iT и смещенных на iT импульсов:

   (4)

Сравнивая (3) и (4) и полагая, что w1=2/T, получим:

  (5)

где Cn - коэффициенты ряда Фурье периодической последовательности импульсов, не накладывающихся друг на друга, равны спектральной плотности одного из этих импульсов, деленной на период Т. Это свойство используется при нахождении спектра периодического сигнала. Сначала определяется спектральная плотность одиночного импульса, а потом по (5) коэффициенты ряда Фурье.

Спектральная плотность одиночного импульса:

рис.а.

Спектр последовательности импульсов:

рис.б.

При увеличении периода Т спектральные линии (рис. б) сближаются, а коэффициенты       уменьшаются, но таким образом соотношение Cn/f1 остается постоянным. При Т-> получим одиночный импульс.

Дискретное преобразование Фурье.

ДПФ определяет спектр дискретной периодичной функции x(t).

ДПФ – обратимая операция отображения временных рядов в область частот.

Свойства ДПФ аналогичны свойствам интегрального преобразования Фурье.

ДПФ определяет линейчатый спектр периодичной дискретизации функции времени, а обратное дискретное преобразование Фурье позволяет восстановить функцию времени по ее спектру.

Периодичная непрерывная функция времени x0(t) с периодом Р и частотой  f0= 1/Р определяется рядом Фурье:

     (1)

где коэффициенты x(n) (комплексные отчеты спектра) определяются следующим образом:

=  (2)

Непрерывная периодичная функция и ее спектр:

Линейчатость спектра x(n) является следствием периодичности функции x0(t).

Выполним дискретизацию функции x0(t). Для этого необходимо выполнение условий, выражающих требования теоремы Котельникова:

x(n)=0, |n| n, PД> 2n1f0

f1=n1f0

T=

В результате дискретизации получим дискретную функцию с периодом дискретизации Т:

x(  

Преобразование (2) в нормализованном времени имеет следующий вид:

x(n)=  (3)

Подставляя изображение нормализованной функции в формулу (3):

x(n)=

Используя фильтрующие свойства  -функции, определим:

 

и, полагая t= kТ, x(k)=x0(k), перепишем изображение спектра через x(k):

x(n)=   (4)

(4) – дискретное преобразование Фурье.

Спектр находится по временной дискретной функции.

Обратное ДПФ,

x(k)=  (5)

x(k)=F-1

k – дискретное время,

n – дискретная частота (номер гармоники).

ДПФ и ОДПФ оперируют с конечными массивами чисел, причем массив x(k) и x(n) одинаковы.

ДПФ устанавливает связь между массивами отчета и массивами сигнала.

Быстрое преобразование Фурье (БПФ).

БПФ вычисляется по двум направлениям:

  1.  децимация по времени
  2.  децимация по частоте.

Вычисление БПФ посредством децимации по времени.

Исходную последовательность X(k), состоящую из N отчетов, разделим на две последовательности с четными номерами (У(к)) и нечетными (Z(к)):

У(к)=Х(2к)

Z(к)=Х(2к+1)


w1|S(w)|/2

w1  2w1

-2w1  -w1

X0(t)

p

p=1/f0

x(n)

ДПФ         ОДПФ

NT=P


 

А также другие работы, которые могут Вас заинтересовать

1093. Системы парораспределения паровых турбин. Сопловое и дроссельное парораспределение 651 KB
  Общая характеристика систем парораспределения. Общий характер суточного графика нагрузок энергосистемы. Схема основных паропроводов турбоустановки К-210-12,8 ЛМЗ. Дроссельное парораспределение
1094. Обводное парораспределение. Регулирование мощности способом скользящего начального давления 340 KB
  Обводное (байпасное) парораспределение. Выбор способа парораспределения паровых турбин. Регулирование мощности энергоблоков способом скользящего давления. Особенности перевода энергоблока на скользящее начальное давление.
1095. Математические модели и синтез цифровых нерекурсивных фильтров 200.5 KB
  Общие характеристики цифровых фильтров. Математические модели цифровых нерекурсивных фильтров. Методика синтеза цифровых нерекурсивных фильтров. Алгоритм Ремеза для построения оптимального цифрового нерекурсивного фильтра.
1096. Математические модели и синтез цифровых рекурсивных фильтров 1.61 MB
  Математические модели цифровых рекурсивных фильтров. Методика синтеза цифровых рекурсивных фильтров. Численное исследование методики синтеза цифровых рекурсивных фильтров.
1097. Преобразование Фурье 225 KB
  Аналоговое преобразование Фурье. Дискретное преобразование Фурье. Алгоритм быстрого преобразования Фурье с прореживанием по времени. Алгоритм быстрого преобразования Фурье с прореживанием по частоте. Метод двоичной инверсии.
1098. Створення видавництва СІЯЧ як важливий етап видавничої справи міста Черкаси 1.12 MB
  Створення видавництва СІЯЧ як важливий етап видавничої справи міста Черкаси. Законодавче підґрунтя. Створення самостійного видавництва м. Черкаси. Особливості видавничої продукції видавництва СІЯЧ. Архітектонічна структура видавничої продукції.
1099. Дизайн комп’ютерної графіки та реклами 592 KB
  Основними завданням випускної роботи освітньо-кваліфікаційного рівня Спеціаліст. Вимоги до оформлення та представлення на захист випускної роботи. Стандартне вирішення оформлення першого планшету. Проектні об’єкти комплексної розробки рекламних виробів.
1100. Операционная система DOS 35 KB
  Установка операционной системы DOS, изучение основных команд и программ обслуживание.
1101. Операционная система Windows 98 Second Edition (9X) 40 KB
  На этой лабораторной работе Вы установите операционную систему Windows 98 Second Edition, научитесь основным программам обслуживания, работе с реестром и методам восстановления реестра. Воспользуйтесь ранее установленной виртуальной машиной с операционной системой DOS. Укажите в настройках виртуальной машины CD - ISO образ и выберите местонахождение образа.