67775

Преобразования Фурье

Лабораторная работа

Математика и математический анализ

ДПФ определяет спектр дискретной периодичной функции x(t). ДПФ – обратимая операция отображения временных рядов в область частот. Свойства ДПФ аналогичны свойствам интегрального преобразования Фурье. ДПФ определяет линейчатый спектр периодичной дискретизации функции времени, а обратное дискретное...

Русский

2014-09-14

101.5 KB

11 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАРИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ИВС

Лабораторная работа

по дисциплине: ТДЛС

«Преобразования Фурье»

    Выполнили: студенты группы ВМ-41

Лобанов С.М.

Полушкина О.В

    Проверила: Малашкевич И.А.

Йошкар-Ола

2003


Содержание

[0.1] Лабораторная работа

[1] Дискретное преобразование Фурье.

[2] Обратное ДПФ,

[3] Быстрое преобразование Фурье (БПФ).

[4] Вычисление БПФ посредством децимации по времени.


Преобразование Фурье (обобщение рядов Фурье).

Преобразование Фурье позволяет получать спектральные характеристики не периодических сигналов.

Пусть есть абсолютно интегральный сигнал S(t), удовлетворяющий условию:

    (1)

тогда прямое преобразование Фурье оценивается через спектральную плотность сигнала:

 (2)

Обратное преобразование Фурье оценивается по спектральной плотности, можно найти сигнал во временной области.

Сравним спектральную плотность одиночного импульса, сосредоточеннного

на интервале от 0 до Т:

    (3)

и спектр периодической функции, которая образуется из смещенных на время iT и смещенных на iT импульсов:

   (4)

Сравнивая (3) и (4) и полагая, что w1=2/T, получим:

  (5)

где Cn - коэффициенты ряда Фурье периодической последовательности импульсов, не накладывающихся друг на друга, равны спектральной плотности одного из этих импульсов, деленной на период Т. Это свойство используется при нахождении спектра периодического сигнала. Сначала определяется спектральная плотность одиночного импульса, а потом по (5) коэффициенты ряда Фурье.

Спектральная плотность одиночного импульса:

рис.а.

Спектр последовательности импульсов:

рис.б.

При увеличении периода Т спектральные линии (рис. б) сближаются, а коэффициенты       уменьшаются, но таким образом соотношение Cn/f1 остается постоянным. При Т-> получим одиночный импульс.

Дискретное преобразование Фурье.

ДПФ определяет спектр дискретной периодичной функции x(t).

ДПФ – обратимая операция отображения временных рядов в область частот.

Свойства ДПФ аналогичны свойствам интегрального преобразования Фурье.

ДПФ определяет линейчатый спектр периодичной дискретизации функции времени, а обратное дискретное преобразование Фурье позволяет восстановить функцию времени по ее спектру.

Периодичная непрерывная функция времени x0(t) с периодом Р и частотой  f0= 1/Р определяется рядом Фурье:

     (1)

где коэффициенты x(n) (комплексные отчеты спектра) определяются следующим образом:

=  (2)

Непрерывная периодичная функция и ее спектр:

Линейчатость спектра x(n) является следствием периодичности функции x0(t).

Выполним дискретизацию функции x0(t). Для этого необходимо выполнение условий, выражающих требования теоремы Котельникова:

x(n)=0, |n| n, PД> 2n1f0

f1=n1f0

T=

В результате дискретизации получим дискретную функцию с периодом дискретизации Т:

x(  

Преобразование (2) в нормализованном времени имеет следующий вид:

x(n)=  (3)

Подставляя изображение нормализованной функции в формулу (3):

x(n)=

Используя фильтрующие свойства  -функции, определим:

 

и, полагая t= kТ, x(k)=x0(k), перепишем изображение спектра через x(k):

x(n)=   (4)

(4) – дискретное преобразование Фурье.

Спектр находится по временной дискретной функции.

Обратное ДПФ,

x(k)=  (5)

x(k)=F-1

k – дискретное время,

n – дискретная частота (номер гармоники).

ДПФ и ОДПФ оперируют с конечными массивами чисел, причем массив x(k) и x(n) одинаковы.

ДПФ устанавливает связь между массивами отчета и массивами сигнала.

Быстрое преобразование Фурье (БПФ).

БПФ вычисляется по двум направлениям:

  1.  децимация по времени
  2.  децимация по частоте.

Вычисление БПФ посредством децимации по времени.

Исходную последовательность X(k), состоящую из N отчетов, разделим на две последовательности с четными номерами (У(к)) и нечетными (Z(к)):

У(к)=Х(2к)

Z(к)=Х(2к+1)


w1|S(w)|/2

w1  2w1

-2w1  -w1

X0(t)

p

p=1/f0

x(n)

ДПФ         ОДПФ

NT=P


 

А также другие работы, которые могут Вас заинтересовать

29466. Функциональные последовательности и функциональные ряды. Понятие равномерной сходимости 23.15 KB
  Понятие равномерной сходимости Равномерная сходимость функционального ряда Пусть функции комплексной переменной z. Важнейшим понятием для теории таких рядов является понятие равномерной сходимости. Желание избавится от z и приводит к понятию равномерной сходимости функционального ряда. Каждое значение x ∈ I для которого последовательность 3 имеет некоторый конечный предел принадлежит области сходимости этой последовательности.
29470. Необходимый признак сходимости(расходимости) гармонического ряда 23.45 KB
  Необходимый признак сходимостирасходимости гармонического ряда Необходимый признак сходимости ряда. Если то ряд расходится это достаточный признак расходимости ряда. Также следует запомнить понятие обобщенного гармонического ряда:1 Данный ряд расходится при . Еще раз подчеркиваю что почти во всех практических заданиях нам совершенно не важно чему равна сумма например ряда важен сам факт что он сходится.
29471. Признак Даламбера в предельной и непредельной форме 168.98 KB
  При́знак дАламбе́ра или Признак Даламбера признак сходимости числовых рядов установлен Жаном дАламбером в1768 г. Если для числового ряда существует такое число что начиная с некоторого номера выполняется неравенство то данный ряд абсолютно сходится; если же начиная с некоторого номера то ряд расходится. Признак сходимости дАламбера в предельной форме[править] Если существует предел то рассматриваемый ряд абсолютно сходится если а если расходится. Если то признак д′Аламбера не даёт ответа на вопрос о сходимости ряда.
29472. Признак коши (радикальный) 15.45 KB
  Радикальный признак Коши: Рассмотрим положительный числовой ряд .в При признак не дает ответа. Нужно использовать другой признак.
29474. Накочередующиеся ряды, признак Лейбница 18.25 KB
  Теорема Лейбница о сходимости знакочередующихся рядов Признак Лейбница признак сходимости знакочередующегося ряда установлен Готфридом Лейбницем. Формулировка теоремы: Пусть для знакочередующегося ряда выполняются следующие условия: монотонное убывание. Тогда этот ряд сходится.