67807

АРИФМЕТИКА ЦЕЛЫХ ЧИСЕЛ

Лабораторная работа

Математика и математический анализ

Определение. Если для целых чисел и в кольце целых чисел существует такое число, что , то говорят, что целое число делится на целое число, и пишут. При этом число называется делимым или кратным числа, число – делителем числа, число – частным. Любое целое число всегда можно разделить с остатком на произвольное целое число.

Русский

2014-09-15

399.5 KB

2 чел.

PAGE   \* MERGEFORMAT 3

Лабораторная работа № 3

Тема: АРИФМЕТИКА ЦЕЛЫХ ЧИСЕЛ

Цель работы – изучить основные понятия, необходимые для обоснования модульной арифметики и операций в расширениях конечных полей.

Краткие теоретические сведения.

1. Делимость целых чисел.

Определение. Если для целых чисел  и  в кольце целых чисел  существует такое число , что , то говорят, что целое число  делится на целое число , и пишут . При этом число  называется делимым или кратным числа , число  – делителем числа , число  – частным.

Любое целое число  всегда можно разделить с остатком на произвольное целое число .

Теорема (о делении с остатком). Для любых целых чисел  и , где , всегда существует одна и только одна пара целых чисел и таких, что

, где .

Число  называется неполным частным, а  – остатком от деления  на .

Определение. Число  , делящее одновременно целые числа  и , называется общим делителем этих чисел. Наибольшее число  с таким свойством называется наибольшим общим делителем (сокращенно НОД) чисел  и . Обозначение: .

Целые числа  и  называются взаимно простыми, если  .

Определение. Число  , делящееся одновременно на целые числа  и , называется общим кратным этих чисел. Наименьшее число  с таким свойством называется наименьшим общим кратным (сокращенно НОК) чисел  и . Обозначение: .

Очевидно, .

Наибольший общий делитель двух целых чисел   вычисляется с помощью т.н. алгоритма Евклида. В этом алгоритме основную роль играет операция деления чисел с остатком, т.е. представление вида , где . Алгоритм Евклида задаётся последовательностью равенств

, ;

, ;

, ;

...........................................        (1)

, ;

, .

Теорема. Для любых целых чисел  и , одновременно не равных нулю, наибольший общий делитель всегда существует и равняется последнему не равному нулю остатку алгоритма Евклида.

Теорема (о линейном представлении НОД) Для любых целых чисел  и  уравнение

,

где  – наибольший общий делитель целых чисел  и , всегда имеет решение в целых числах.

Пусть и – решения уравнения . Запись

,       (2)

называется линейным представлением наибольшего общего делителя  целых чисел и .

При  равентсво (2) выражает критерий взаимной простоты чисел  и .

Решение уравнения , где , – целые, можно найти с помощью т.н. расширенного алгоритма Евклида. Очевидно, достаточно решить это уравнение при положительных  и .

Действуя в классической схеме (1) обратным ходом снизу вверх, имеем

(идем по цепочке равенств (1), выражая из каждого следующего равенства

остаток и подставляя его в полученное к этому моменту выражение)

....

Равенство (2) можно записать в векторной форме, то есть представить наибольший общий делитель целых чисел  и  набором коэффициентов разложения по начальными числам:

.

Для нахождения вектора  равенства (1) классического алгоритма применяются к векторам (Арифметические действия с упорядоченными наборами чисел выполняются покомпонентно). Отметим, что сами начальные числа  и  можно представить такими векторами очень просто:

, потому что ,

, потому что .

Протокол работы расширенного алгоритма Евклида удобно записывать в виде таблицы:

Остатки

Частные

1

0

0

1

Получение новых значений компонент  наборов  показано в третьей строке таблицы (клетки выделены): из числа в первой клетке вычитается число во второй клетке, умноженное на число, что стоит справа от него во второй строке, результат записывается в третью клетку. Аналогично выполняется операция для нахождения компонент  в четвёртой строке.

Линейным диофантовым уравнением называется уравнение вида

,             (3)

где  – неизвестные, .

Пусть . Диофантово уравнение (3) имеет решение тогда и только тогда, когда . При этом общее решение определяется формулой:

,   ,       (4)

где  – частное решение уравнения (3), а  – произвольное целое число.

Решения уравнений  и  могут отличаться только знаками.

Алгоритм решения диофантова уравнения следующий:

  1.  По алгоритму Евклида находим НОД . Если , то уравнение (3) имеет решения. Если , то уравнение (3) решений не имеет.
  2.  По расширенному алгоритму Евклида находим линейное представление НОД : . С использованием следствия 2 определяем знаки для линейного представления. Частное решение уравнения (3) имеет вид:

,  .

  1.  Подставляя полученное частное решение в (4), получим общее решение уравнения (3).

Простым числом называется натуральное число, у которого есть в точности два неравных натуральных делителя: 1 и оно само.

Свойства простых чисел:

  1.  Наименьший отличный от единицы делитель натурального числа  является простым.
  2.  Наименьший простой делитель составного числа  не больше .

Из свойства 2 вытекает простое правило проверки натурального числа на простоту: если натуральное число  не делится ни на одно простое число  такое, что , то  – простое; в противном случае – составное.

Основная теорема арифметики: каждое натуральное число единственным, с точностью до порядка сомножителей, образом представляется в виде произведения степеней простых чисел.

Каноническим разложением (канонической формой) составного натурального числа  называется представление его в виде . Если же учитываются нулевые показатели степени то такое расписание называется обобщённым каноническим разложением.

Следствие. Пусть и – произвольные натуральные числа, и пусть

,  

– их обобщённые канонические разложения (,). Тогда наибольший общий делитель и наименьшее общее кратное чисел и соответственно имеют вид:

, где ;

, где .

Порядок выполнения работы.

  1.  Изучить краткие теоретические сведения об арифметике в кольце целых чисел.

2. С помощью классического алгоритма Евклида найти НОД и НОК чисел

1) 3094 и 1235;    13) 1972 и 2873;

2) 4557 и 1209;    14) 2257 и 5217;

3) 1430 и 4774;    15) 6426 и 1593;

4) 3366 и 1326;    16) 7371 и 1386;

5) 1254 и 1794;    17) 4372 и 1356;

6) 1683 и 1326;    18) 2583 и 3403;

7) 2142 и 3468;    19) 2870 и 1353;

8) 1426 и 3657;    20) 5124 и 1612;

9) 4047 и 1539;    21) 2457 и 4998;

10) 3139 и 3870;   22) 4473 и 2508;

11) 6630 и 5199;   23) 2639 и 1911;

12) 1836 и 2210;   24) 4914 и 1426;

        25) 3315 и 4620.

3. С помощью расширенного алгоритма Евклида найти линейное представление НОД чисел из п.2.

4. Найти решение диофантова уравнения .

1

2

3

4

5

6

7

8

9

10

a

24

52

13

29

29

44

65

18

55

31

b

51

73

61

77

94

93

97

47

201

86

11

12

13

14

15

16

17

18

19

20

a

27

33

47

17

55

18

115

14

38

31

b

43

78

122

76

69

71

41

39

53

87

21

22

23

24

25

a

21

48

37

26

45

b

79

109

98

67

103

5. С помощью канонического разложения найти НОД и НОК чисел из п.2.

6. Проверить на простоту число:

1) 2293;     13) 1971;

2) 2373;    14) 2087;

3) 1037;    15) 1813;

4) 1119;    16) 1387;

5) 1289;    17) 1553;

6) 1311;    18) 2573;

7) 1459;    19) 1359;

8) 1291;    20) 1273;

9) 1623;    21) 2281;

10) 2013;    22) 2089;

11) 1281;    23) 1723;

12) 1817;    24) 1449;

      25) 1543.

7. Составить отчет, приобщив полученные результаты.

Требования к отчету.

В отчете должны быть приведены:

1. Краткие сведения об изученных свойствах целых чисел;

2. Решения своего варианта с необходимыми пояснениями.

3. Ответы на контрольные вопросы.

Контрольные вопросы:

  1.  Как определяется делимость целых чисел?
  2.  Что означает поделить число на число с остатком?
  3.  Что такое НОД двух целых чисел?
  4.  Что такое НОК двух целых чисел?
  5.  В чём суть классического алгоритма Евклида?
  6.  В чём суть расширенного алгоритма Евклида?
  7.  Что называется диофантовым уравнением? Как его решить?
  8.  Что называется каноническим разложением натурального числа? Обобщённым каноническим разложением?
  9.  Как найти НОД и НОК двух целых чисел с помощью канонического разложения?
  10.  Какие натуральные числа называются простыми? Составными?
  11.  Каккпроверить натуральное число на простоту?


 

А также другие работы, которые могут Вас заинтересовать

76638. Россия в конце 20-в начале 21 века. Глобальные проблемы человечества 71 KB
  Первым Президентом России еще в составе СССР 12 июня 1991 г. На 5 съезде Верховного Совета России председателем этого органа власти был избран Р. С кровавой войны в России началась новая эра эра президентского правления. По итогам выборов состав Государственной думы сложился следующим образом: из 450 мест наибольшее число депутатских мандатов получили представители пропрезидентского блока Выбор России Е.
76639. История в системе социально-гуманитарных наук. Основы методологии исторической науки. Факторы самобытности российской истории 35 KB
  История наука о развитии человеческого общества во всем его многообразии. История общества представляет собой совокупность конкретных и многообразных действий и поступков отдельных людей человеческих сообществ находящихся в определенной взаимосвязи составляющих все человечество. В системе социально-гуманитарных дисциплин история может играть роль всеобщей базы которая постепенно накапливается.
76640. Восточные славяне в древности 32.5 KB
  Однако историки сходятся во мнении что реальными предшественниками русских людей были восточные славяне принадлежащие к группе индоевропейских народов. В результате разгрома сарматами славяне продвигаются на север в лесную зону ассимилируя литовско-латышские и финно-угорские племена. Главными действующими лицами в нем были германцы и славяне.
76641. Особенности становления государственности в России и в мире. Киевская Русь 32.5 KB
  Центром этого государства был Киев. Название этого государства неизвестно. Иногда его называют Каганат русов поскольку глава этого государства по аналогии с соседним хазарским носил титул Кагана. На эти сведения опирается так называемая норманская теория происхождения русского государства.
76642. Крещение Руси 34.5 KB
  Оно имеет длительную историю: распространение христианства на Руси началось задолго до крещения на Днепре и продолжалось еще в течение полутора веков. Православные источники связывают проникновение христианства на территорию Киевской Руси с миссионерской деятельностью апостола Андрея Первозванного в I веке н. Владимир предпринял первую религиозную реформу суть которой состояла в попытке слияния разнородных богов всех племен Киевской Руси в единый пантеон во главе с княжеским богом Перуном.
76643. Феодальная раздробленность Руси 27 KB
  Как и в Западной Европе тенденции к политической раздробленности на Руси проявились рано. Именно с этого времени историческая наука ведет отсчет феодальной раздробленности на Руси. В первые полтора века существования Киевской Руси дружина полностью находилась на содержании у князя.
76645. Русские земли в 15 в. и европейское средневековье. Складывание централизованного государства. Возвышение Москвы 39 KB
  Возвышение Москвы Как и в Западной Европе после периода феодальной раздробленности на Руси в XIVXV вв. На Руси хотя экономические связи между отдельными княжествами без сомнения развивались но общий всероссийский рынок возник позже только в XVII в. Таким образом политические процессы на Руси опережали экономические. Усилиями нескольких поколений выдающихся деятелей на Руси складывается такое государство.
76646. Россия в 16 в. в контексте развития европейской цивилизации. Иван-4 – первый царь Всея Руси. Опричина 35 KB
  Период опричнины В 1560 г. царь вводит новый порядок управления государством получивший название опричнины. Политическим и административным центром опричнины стал особый двор со своей Боярской думой и приказами. В опричнине была особая казна и особое опричное войско: первоначально одна тысяча к концу опричнины шесть тысяч.