67811

АРИФМЕТИКА МНОГОЧЛЕНІВ

Лабораторная работа

Математика и математический анализ

Множина всіх многочленів від однієї змінної над полем утворює комутативне кільце з одиницею. Будь-який ненульовий елемент поля можна розглядати як многочлен нульового степеня нуль поля також належить до многочленів його називають нульовим многочленом.

Украинкский

2014-09-15

456.5 KB

9 чел.

PAGE   \* MERGEFORMAT 5

Лабораторна робота № 4

Тема: АРИФМЕТИКА МНОГОЧЛЕНІВ

Мета роботи – вивчити основні поняття, необхідні для обґрунтування модульної арифметики і операцій в розширеннях скінченних полів.

Короткі теоретичні відомості.

1. Многочлени над полем.

Многочлен над полем  – це функція вигляду , де , . Ціле число  називається степенем многочлена і позначається . Числа  називаються коефіцієнтами,  – вільним членом. Областю зміни аргументу  є . Множення і додавання є операціями в полі. Константи (елементи поля ) розглядаються як многочлени нульового степеня.

Множина  всіх многочленів від однієї змінної над полем  утворює комутативне кільце з одиницею. Над многочленами можна проводити операції додавання і множення, причому ці дії мають всі властивості операцій в комутативному кільці (асоціативність, комутативність, дистрибутивність, існування нульового елементу, і т. д.). Будь-який ненульовий елемент поля можна розглядати як многочлен нульового степеня, нуль поля також належить до многочленів, його називають нульовим многочленом. Роль одиниці кільця  відіграє одиничний елемент 1 поля , який розглядається як многочлен нульового степеня.

Якщо , по многочлен називається зведеним (нормованим, унітарним). Будь-який многочлен над полем можна привести до нормованого, помноживши його на , але в кільці це не так, оскільки не для всіх елементів існують обернені.

В кільці многочленів  має місце алгоритм ділення з остачею, аналогічний тому, який має місце для цілих чисел.

Означення. Якщо для многочленів  і  в кільці  існують такі многочлени  і , що многочлен  можна представити у вигляді 

де степінь многочлена  не більше степеня многочлена  (), то говорять, що многочлен  ділиться на многочлен  з остачею.

2. Подільність многочленів

При діленні многочленів з остачею застосовують ту ж термінологію, що і для цілих чисел: многочлен  називається діленим, многочлен  – дільником, многочлен  – неповною часткою, а многочлен  – остачею.

На практиці ділення з остачею для двох заданих многочленів виконується аналогічно діленню багатозначних чисел – "кутом".

В окремому випадку, коли дільник  є зведеним лінійним двочленом, тобто , застосовується схема Горнера.

Покладемо

.

Прирівнявши коефіцієнти в обох частинах останньої рівності, отримаємо:

Звичайно процес ділення на лінійний двочлен оформляють у вигляді таблиці:

3. Алгоритм Евкліда для многочленів

Многочлен  називається спільним дільником многочленів  і , якщо він є дільником кожного з них.

Спільний дільник многочленів  і , який ділиться на будь-який спільний дільник цих многочленів, називається найбільшим спільним дільником (НСД) многочленів  і . Позначається символом  або .

Звичайно за   вибирається нормований многочлен.

Два многочлени   і  називаються взаємно простими, якщо кожен їх спільний дільник є многочленом нульового степеня (константою, що відрізняється від нуля).

Для визначення НСД двох многочленів використовується аналог класичного алгоритму Евкліда для чисел.

Нехай задані два многочлена  і , причому вважатимемо, що степінь  більше степеня . Виконаємо послідовно низку операцій ділення з остачею, які описуються наступною системою рівностей:

;

;

;

....................................................

;

.

Остання відмінна від нуля остача  і буде найбільшим спільним дільником многочленів  і .

Теорема (про лінійне представлення НСД двох многочленів). Для будь-яких двох многочленів  і  з  існує найбільший спільний дільник , який можна представити у вигляді:

,

де .

Два многочлени  і  є взаємно простими тоді і тільки тоді, коли існують многочлени  такі, що

.

Для визначення лінійного представлення НСД двох многочленів використовується аналог розширеного алгоритму Евкліда для чисел.

4. Многочлени над полем .

Додавання і множення в полі  визначається наступними таблицями

+

0

1

х

0

1

0

0

1

0

0

0

1

1

0

1

0

1

Якщо многочлен  незвідний, то остачі від ділення всіх многочленів з  на  утворюють поле  відносно операцій множення і складання многочленів з коефіцієнтами з . Поле  є розширенням. Кількість його елементів дорівнює . Рівність в полі  є конгруенцією вигляду . Елемент, обернений  обчислюється як многочлен  з рівняння , оскільки всі многочлени степеня менше  взаємно прості з .

Якщо многочлену ,  поставити у відповідність вектор , то операції в полі  можна інтерпретувати як операції над векторами – розширеними числами, праві крайні координати яких належать .

5. Незвідність многочленів

Многочлен ненульового степеня називається незвідним, якщо він ділиться лише на константи і сам на себе.

Незвідні многочлени  грають важливу роль в побудові кільця , оскільки кожен многочлен з  може бути представлений, причому єдиним чином, у вигляді добутку незвідних многочленів. Ці незвідні многочлени є аналогами простих чисел, через добуток яких можна виразити будь-яке ціле число.

Як простих чисел в, так і незвідних  многочленів над довільним полем  існує нескінченна множина.

Над будь-яким скінченним полем існують незвідні многочлени скільки завгодно високого степеня.

Порядок виконання роботи.

1. Вивчити короткі теоретичні відомості про властивості многочленів.

2. Користуючись схемою Горнера, обчислити :

  1.  ,   ;
    1.  ,   ;
    2.  ,   ;
    3.  ,  ;
    4.  ,   ;
    5.  ,  ;
    6.  , ;
    7.  , ;
    8.  ,   ;
    9.  ,  ;
  2.  ,   ;
  3.  ,  ;
  4.  ,  ;
  5.  ,  ;
  6.  ,  ;
  7.  ,   ;
  8.  ,  ;
  9.  ,   ;
  10.  ,   ;
  11.  ,  ;
  12.  ,   ;
  13.  ,   ;
  14.  ,  ;
  15.  ,  ;
  16.  , .

2. За допомогою розширеного алгоритму Евкліда знайти лінійне представлення найбільшого спільного дільника многочленів  і :

  1.  ,
  2.  ,
  3.  ,
  4.  ;
  5.  ,
  6.  ,
  7.  ,
  8.  ,
  9.  ,
  10.  ,
  11.  
  12.  
  13.  
  14.  
  15.  
  16.  
  17.  
  18.  
  19.  
  20.  
  21.  
  22.  ;
  23.  ;
  24.  ;
  25.  .

3. За допомогою розширеного алгоритму Евкліда знайти лінійне представлення найбільшого спільного дільника многочленів  і  над полем .

1

2

3

4

5

6

7

8

9

10

11

12

13

4

5

8

6

5

6

5

7

4

6

6

7

7

3

4

4

1

3

5

1

3

2

3

4

2

4

14

15

16

17

18

19

20

21

22

23

24

25

6

8

6

7

8

9

8

7

9

8

5

8

2

5

5

6

3

5

2

5

4

1

2

5

4. Скласти звіт, приєднавши отримані результати.

Вимоги до звіту.

У звіті мають бути приведені:

1. Короткі відомості про вивчені властивості многочленів.

2. Розв'язання свого варіанту з необхідними поясненнями.

3. Відповіді на контрольні питання.

Контрольні питання.

  1.  Що таке многочлен?
    1.  Що таке многочлен над полем?
      1.  Як знайти НСД двох многочленів?
      2.  Як знайти лінійне представлення НСД двох многочленів?
      3.  Чому лишки за модулем незвідного над  многочлена не утворюють поле?
      4.  Чому операції додавання і віднімання в розширенні поля  збігаються?


 

А также другие работы, которые могут Вас заинтересовать

3564. Загальне поняття алгоритму. Алгоритмічні мови 84 KB
  Загальне поняття алгоритму. Алгоритмічні мови. У старому трактуванні алгоритм — це точний набір інструкцій, що описують послідовність дій виконавця для досягнення результату рішення задачі за кінцевий час. У міру розвитку паралельності в роботі...
3565. Послідовність рішення задачі по розробці програми 78 KB
  Послідовність рішення задачі по розробці програми Послідовність рішення задачі по розробці програм складається з наступних етапів: Формулювання задачі в термінах деякої прикладної області знань, Формалізація задачі, побудова математичної та інформац...
3566. Основні визначення. Приклади алгоритмів 122 KB
  Основні визначення. Приклади алгоритмів Аналіз (від др. греч. «розкладання, розчленовування») — операція уявного або реального розчленовування цілого (речі, властивості, процесу або відношення між предметами) на складові частини, виконуван...
3567. Апаратні та програмні складові електронно-обчислювальної машини. 46 KB
  Апаратні та програмні складові електронно-обчислювальної машини. Персональний комп’ютер можна представити з допомогою двох невід’ємних складових частин: апаратна частина, програмне забезпечення. Апаратні складові частини можна розділити ...
3568. Основи мови С# 302 KB
  Основи мови С# Створення мови C# Не зважаючи на те, що курс Алгоритмізації та програмування , як одним із своїх компонентів, передбачає реалізацію розроблених алгоритмів на існуючих мовах програмування. Я хотів би зупинитися на деяких особливостях м...
3569. Типи даних C# 88.5 KB
  Типи даних C# Цей розділ присвячений універсальній системі типів .NET Common Type System (CTS), яка знаходиться в центрі Microsoft .NET Framework. CTS визначає не тільки всі типи, але і правила, яким Common Language Runtime (CLR) слідує відносно ого...
3570. Синтаксис мови програмування C# 164.5 KB
  Синтаксис мови програмування C# У цьому розділі ми розглянемо основу будь-якої мови програмування — його здатність виконувати привласнення і порівняння за допомогою операторів. Ми побачимо, які оператори є в С# і яке їх старшинство, а потім заг...
3571. Введення в C#. Створення консольних додатків 1.45 MB
  Введення в C#. Створення консольних додатків Мова C# (вимовляється Си-Шарп) - це мова програмування від компанії Microsoft. Він входить у версію Visual Studio - Visual Studio.NET. Крім C# в Visual Studio.NET входять Visual Basic.NET й Visual C++. Од...
3572. Алгоритми роботи з цілими числами 54 KB
  Тип ціле число є основним для будь-якої алгоритмічної мови. Зв'язано це з тим, що вміст комірки пам'яті або регістра процесора можна розглядати як ціле число. Адреси елементів пам'яті також являють собою цілі числа, з їхньою допомогою записуються машинні команди й т.д...