6798

Аналоговые схемы на операционных усилителях

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Аналоговые схемы на операционных усилителях Цель работы - изучение некоторых схем включения операционного усилителя для обработки аналоговых сигналов определение характеристик и параметров инвертирующего и неинвертирующего усилителей, сумматор...

Русский

2013-01-08

146.5 KB

59 чел.

Аналоговые схемы на операционных усилителях

Цель работы – изучение некоторых схем включения операционного усилителя для обработки аналоговых сигналов; определение характеристик и параметров инвертирующего и неинвертирующего усилителей, сумматора и простейших активных фильтров.

6.1 Основные положения

Аналоговые схемы на операционных усилителях (ОУ) называют линейными, что обусловлено использованием при их работе линейного участка передаточной характеристики ОУ. С учетом этого условия, а также благодаря высоким качественным показателям ОУ на его основе создаются высокоточные устройства обработки и преобразования аналоговых сигналов (сумматоры, интеграторы, дифференциаторы, логарифматоры, умножители сигналов и т.д.). В данной работе для исследований выбраны простейшие схемы включения ОУ с использованием отрицательной обратной связи.

6.1.1 Инвертирующий усилитель

Схема инвертирующего усилителя приведена на рис.6.1. С выхода ОУ через резистор R2 подается сигнал параллельной отрицательной обратной связи по напряжению на инвертирующий вход. На этот же вход подается через резистор R1 входной сигнал Uвх. Неинвертирующий вход заземлен.

При анализе схем на ОУ обычно считают его  идеальным, который имеет коэффициент усиления Коу→∞ и входное сопротивление Rвх.оу→∞. Это означает, что входы ОУ не потребляют тока. Кроме того, потенциал суммирующей точки А на входе ОУ, равный , при Коу будет стремиться к нулю (е0).

С учетом приведенных допущений можно записать выражения для токов усилителя

,,

(6.1)

где  знак «–» для тока I2 связан с инвертированием входного сигнала.

Так как входы ОУ не потребляют тока, то имеем равенство токов
I1 =I2 и с учетом (6.1) получаем выражение для коэффициента усиления инвертирующего усилителя

.

(6.2)

Знак «–» указывает, что полярности входного и выходного напряжений противоположны.

Так как входным током схемы Iвх является ток I1, то при условии е=0 входным сопротивлением усилителя является величина резистора R1:

.

(6.3)

Таким образом, за счет введения глубокой отрицательной обратной связи повышена стабильность коэффициента усиления, который определяется только отношением сопротивлений резисторов R2/R1. При этом также расширяется линейная область передаточной характеристики за счет снижения искажений в области больших сигналов, а также уменьшается выходное сопротивление усилителя [2,3].

6.1.2 Неинвертирующий усилитель

Схема неинвертирующего усилителя приведена на рис.6.2. Входной сигнал Uвх подается на неинвертирующий вход ОУ. С выхода ОУ напряжение обратной связи Uoc через делитель из резисторов R1, R2 подается на инвертирующий вход. В данном случае на входах ОУ действует входное напряжение Uвх и напряжение Uoc, что соответствует последовательной отрицательной обратной связи по напряжению.

Выражение коэффициента усиления данной схемы можно получить, используя допущения об идеальности ОУ. При этом сигнал на входах ОУ равен е=UвхUoc=0, откуда получаем равенство

.

(6.4)

Из (6.4) получаем коэффициент усиления неинвертирующего усилителя по напряжению

.

(6.5)

Преимущества данного усилителя аналогичны схеме инвертирующего усилителя. Дополнительным преимуществом является очень высокое значение входного сопротивления, которое больше собственного значения RвхОУ за счет наличия обратной связи [2].

6.1.3 Инвертирующий сумматор и интегратор

Современными областями применения ОУ являются решающая аналоговая схемотехника, связанная с измерениями, обработкой и преобразованием сигналов информации. В таких структурах часто используются различные пассивные элементы, включаемые в цепь отрицательной обратной связи ОУ. Рассмотрим два примера на сумматоре и интеграторе.

На рис.6.3,а приведена схема инвертирующего сумматора на три входных сигнала. Схема собрана на базе инвертирующего усилителя и анализируется с учетом допущения использования идеального ОУ, т.е. входные токи ОУ равны нулю, а потенциал суммирующей точки А на входе ОУ равен е=0.

Рисунок. 6.3 - Инвертирующий сумматор на ОУ (а)

и инвертирующий интегратор на ОУ (б)

На основании этого можно записать равенство для токов в схеме сумматора:

.

(6.6)

Используя соотношения (6.1) для инвертирующего усилителя в п.6.1.1, определяем токи в сумматоре:

.

(6.7)

На основании (6.6) и (6.7) получаем значение выходного напряжения сумматора

.

(6.8)

Из (6.8) видно, что усиления по каждому входу можно независимо устанавливать, меняя сопротивление соответствующего входного резистора. При R1=R2=R3=R4 выходное напряжение будет равно сумме входных напряжений с обратным знаком

.

(6.9)

На примере сумматора можно проследить не только его возможности суммирования нескольких входных напряжений, подаваемых относительно общей заземленности точки, но также и их масштабирование. Это является большим преимуществом, так как решает проблему связи отдельных устройств между собой.

Частным примером можно назвать масштабный усилитель, выполненный на рассмотренных выше инвертирующем и неинвертирующем включении ОУ. Назначение такого усилителя состоит в изменении масштаба (уровня) выходного напряжения посредством умножения входного сигнала на некоторый коэффициент. Так, для инвертирующего усилителя из (6.2) следует, что уровень выходного напряжения

,

т.е. определяется весовым коэффициентом соотношения R2/R1.

На рис.6.3,б приведен инвертирующий интегратор, который получают заменой резистора в обратной связи инвертирующего (масштабного) усилителя конденсатором С. С учетом принятых выше допущений имеем iR=iC=Uвх/R. Напряжение на выходе интегратора при этом имеет вид

.

(6.10)

Для ознакомления с другими типовыми включениями ОУ в аналоговые схемы используйте литературу [1,5,6].

6.1.4 Активные фильтры на ОУ

Активными фильтрами принято называть схемы, состоящие из резисторов, конденсаторов и операционных усилителей в качестве активных элементов. За счет высокого входного сопротивления ОУ (единицы МГОм), его коэффициента усиления (104 – 106 ) и малого выходного сопротивления (десятки Ом) удалось резко повысить качественные показатели активных фильтров при совместном применении с пассивными RC-цепями.

Различают фильтры нижних частот, верхних частот и полосовые фильтры. Основные параметры фильтров можно определить по амплитудно-частотным характеристикам (АЧХ). Основными параметрами фильтров нижних и верхних частот являются коэффициент передачи в полосе пропускания К0, частота среза fc, соответствующая уровню 0,707К0, а также наклон АЧХ в полосе ограничения и неравномерность в полосе пропускания. Для полосовых фильтров параметрами являются коэффициент передачи К0 на частоте резонанса f0 и добротность , где ∆f - полоса пропускания на уровне 0,707К0 (рис.6.5,б).

В активных фильтрах частотно-зависимые RC-цепи могут включаться раздельно на входе ОУ, в цепь обратной связи, либо совместно. На рис.6.4 приведены простейшие схемы активных фильтров нижних и высоких частот и их амплитудно-частотные характеристики (АЧХ).

Приведенные схемы являются фильтрами первого порядка и имеют наклон АЧХ в полосе ограничения 20 дБ/дек.

При объединении фильтров нижних и высоких частот (рис.6.4,а,в) можно получить полосовой фильтр, приведенный на рис.6.5,а.

Приведем расчетные соотношения для рассмотренных активных фильтров [5]. Частота среза для фильтра нижних частот

,

(6.11)

для фильтра высоких частот

,

(6.12)

Резонансная частота полосового фильтра

.

(6.13)

Рисунок 6.4 - Фильтр нижних частот (а) и его АЧХ (б);
фильтр высоких частот (в) и его АЧХ (г)

Рисунок 6.5. Активный полосовой фильтр (а) и его АЧХ (б)

Коэффициенты передачи в полосе пропускания для фильтров нижних и верхних частот

,

(6.14)

для полосового фильтра

,

(6.15)


6.2 Описание схем эксперимента

В работе исследуются несколько аналоговых схем на операционных усилителях (ОУ). На рис.6.6,а приведена схема неинвертирующего усилителя с делителем R1, R2 в цепи отрицательной обратной связи. На рис.6.6,б приведена схема инвертирующего сумматора на два входа. При замыкании ключа S1 происходит изменение коэффициента усиления сумматора. Данная схема предназначена также для исследования инвертирующего усилителя с использованием только одного входа сумматора.

Рисунок 6.6 - Схемы неинвертирующего усилителя (а): R1=10 кОм, R2=20 кОм;
инвертирующего сумматора (б):
R1=R2=10 кОм, R3=R4=50 кОм;
активного фильтра (в):
R1=R2=6,8 кОм, С1=С2=0,022 мкФ

Входные сигналы для обеих схем задаются от источников Е1 и Е2, которые устанавливаются с помощью ручек «Е1» и «Е2».

На рис.6.6,в приведена схема активного фильтра на ОУ, на которой с помощью коммутации ключей S2 и S3 можно реализовать три вида фильтров. Так, при разомкнутых ключах имеем фильтр верхних частот, при замыкании ключа S3 получаем полосовой фильтр, а при замыкании ключей S2 и S3 - фильтр нижних частот. Частота входного сигнала задается переключателем «кГц(α)» и изменяется по амплитуде ручкой «Ег».

Приведенные схемы имеют такое же изображение на накладной панели стенда с указанием номеров контрольных точек (соответственно рис.1, рис.2 и рис.3).

6.3 Порядок выполнения работы

Перед началом экспериментов подготовьте стенд к работе в соответствии с указаниями данной инструкции.

6.3.1 Исследование неинвертирующего усилителя

Снять передаточную характеристику усилителя . Соединить перемычкой гнезда Х2 и Х5 и изменить входное напряжение ручкой «Е1» от максимального отрицательного до максимального положительного значения. Фиксировать входное и выходное напряжения на гнездах Х1 и Х6 с помощью цифрового вольтметра. Данные измерений занести в табл.6.1.

Таблица 6.1

Uвх, В

Uвых, B

6.3.2 Исследование инвертирующего усилителя

6.3.2.1 Снять передаточную характеристику . Соединить перемычкой гнезда Х2 и Х7 и изменять входное напряжение ручкой «Е1» от максимального отрицательного до максимального положительного значения. Фиксировать входное и выходное напряжения на гнездах Х1 и Х9. Данные измерений занести в табл.6.2.

Таблица 6.2

Uвх, В

Uвых, B

Нажать кнопку S1 и повторить измерения.

6.3.3 Исследование инвертирующего сумматора (рис.6.6,б)

Исследовать суммирование напряжений U1 и U2, которые подаются через резисторы R1 и R2 на инвертирующий вход ОУ. Соединить перемычками гнезда Х2 и Х7, Х4 и Х8, подключив источники Е1 и Е2 к входам сумматора. Измерить выходное напряжение сумматора Uвых (Х9) для трех вариантов входных сигналов:

U1=+1B,  U2=+0,5B;

U1=+1B,  U2=-2B;

U1=+2B,  U2=-3B.

6.3.4 Исследование активных фильтров на ОУ

6.3.4.1. Снять амплитудно-частотную характеристику (АЧХ) фильтра нижних частот первого порядка. Кнопки S2 и S3 нажаты. Характеристика снимается путем измерения напряжения Uвых (Х11) при Ег=3 В (Х10), которое поддерживается постоянным с помощью ручки «Ег» при изменении частоты от 0,08 до 20 кГц переключателем «кГц(α)». Данные измерений занести в табл.6.3.

Таблица 6.3

f, кГц

0,08

20

Uвых

6.3.4.2 Снять АЧХ фильтра верхних частот первого порядка. Кнопки S1 и S2 отжаты. Порядок снятия характеристики производится в соответствии с п.6.3.4.1.

6.3.4.3 Снять АЧХ для полосового фильтра. Кнопка S2 отжата, кнопка S3 нажата. Порядок снятия характеристики производится в соответствии с п.6.3.4.1.

6.4 Обработка результатов эксперимента
и оформление отчета

6.4.1 По данным построить передаточную характеристику неинвертирующего усилителя. Для линейного участка передаточной характеристики определить коэффициент усиления Ku и сравнить с расчетным значением, используя формулу (6.5) раздела 6.1 (R1=10 кOм, R2= 20 кОм)

6.4.2 По данным п.6.3.2 построить на одном графике передаточные характеристики инвертирующего усилителя. Для линейных участков передаточных характеристик определить коэффициенты усиления и сравнить с расчетным значением, используя формулу (6.2) раздела 6.1 (R1=10 кОм, R3=R4= 50 кОм).

6.4.3 По данным п.6.4.3 построить АЧХ фильтра нижних частот и полосового фильтра. Характеристики строить в полулогарифмическом масштабе, откладывая на оси частот не  f, а lg f.

Определить экспериментально и расчетным путем коэффициенты передачи К0 в полосе пропускания и частоты среза fc фильтров нижних и верхних частот, а также резонансную частоту полосового фильтра f0.

Для расчетных значений использовать формулу раздела 6.1.4 (R1=R2= 6,8 кОм, С1=С2=0,022 мкФ).

Отчет о выполненной работе должен содержать: цель работы, принципиальную схему эксперимента, таблицы, графики и результаты расчетов с их кратким анализом.

Вопросы для самопроверки

  1.  Что понимают под идеальным ОУ?
  2.  Приведите и опишите схему инвертирующего усилителя.
  3.  Приведите и опишите схему неинвертирующего усилителя.
  4.  Дайте сравнение инвертирующего и неинвертирующего усилителей по входному сопротивлению и коэффициенту усиления.
  5.  Как нужно изменить сопротивления резисторов сумматора, чтобы:

увеличить в 4 раза коэффициенты передачи одновременно по двум входам;

уменьшить в 2 раза коэффициент передачи только по одному входу.

  1.  Приведите схему и по ней объясните вид АЧХ фильтра нижних частот первого порядка.
  2.  Приведите схему и по ней объясните вид АЧХ фильтра верхних частот первого порядка.
  3.  Приведите схему и по ней объясните вид АЧХ полосового фильтра.
  4.  Дайте определение частоте среза и полосе пропускания.
  5.  От каких элементов зависит коэффициент пропускания фильтров нижних и верхних частот.
  6.  Дайте определение добротности полосового фильтра.


 

А также другие работы, которые могут Вас заинтересовать

55336. Культура та мистецтво спілкування 201 KB
  Виховні завдання проекту: розширити знання учнів про етичні норми безконфліктного спілкування та мистецтва володіти собою; формувати в учнів розуміння значення спілкування в житті людини; розвивати почуття відповідальності самодисципліни...
55337. Проектна технологія 83.5 KB
  Основними характеристиками проекту є те, що він передбачає конкретні результати має інноваційний характер. Виконання проекту передбачає звязок із реальним життям незвичайність форми і самостійність виготовлення створення матеріалів що по суті є різними видами документування.
55338. Підготовка педагогів до взаємодії з обдарованими дітьми 74.5 KB
  Мета і завдання проекту Основна мета проекту: створити умови для виявлення підтримки і підготовки вчителів до взаємодії з обдарованими дітьми для ефективного розвитку інтелектуального і творчого потенціалу цих учнів.
55339. Інструмент для видалення бур'янів в саду, на городі 260.5 KB
  Мета проекту: вдосконалити навички роботи з різним інструментом для обробки деревини та металів, розвивати естетичний смак, економічно використовувати матеріали.
55340. ПРОЕКТНА СИСТЕМА ЯК ОДИН ІЗ ЗАСОБІВ ТВОРЧОГО РОЗВИТКУ ОСОБИСТОСТІ 328.5 KB
  Суть проектної технології полягає у функціонуванні цілісної системи дидактичних засобів змісту методів прийомів що адаптує навчальновиховний процес до структурних та організаційних вимог навчального проектування.
55341. Біосферно-ноосферні ідеї В.І. Вернадського – основа сучасної екології 3.33 MB
  Вчення В. Вернадського тим рельєфніше виступає роль і значення для нас всього того що зробив цей геніальний учений мислитель справжній син України який розробив науковий фундамент силу і глибину глобального геологічного процесу втілюючого сучасний перехід біосфери в ноосферу.
55342. ВПРОВАДЖЕННЯ ПЕДАГОІЧНОЇ ІННОВАЦІЇ 178.5 KB
  Актуальність порушеної проблеми зумовлена наступними суперечностями: між вимогами що постали перед шкільною освітою щодо забезпечення всебічного розвитку учнів і наявними засобами їхнього розвитку...
55343. Проектная деятельность как способ мотивации педагогов к использованию ИКТ 133.5 KB
  Цель программы: формирование мотивации педагогов к использованию средств ИКТ в учебно-воспитательном процессе. Как известно мотивация побуждение к действию динамический...
55344. ПРОЕКТНА ТЕХНОЛОГІЯ ЯК ШЛЯХ ДО РЕАЛІЗАЦІЇ ОСОБИСТІСНО-ОРІЄНТОВАНОГО НАВЧАННЯ 162.5 KB
  Хотілося б звернути увагу на те що проектні технології навчання відтворюють процеси дослідницької діяльності оскільки містять цикл і мають на меті процеси руху від незнання до знання на відміну від традиційних лінійних технологій навчання.