6803

Измерение постоянного напряжения и силы электрического тока

Лабораторная работа

Энергетика

Измерение постоянного напряжения и силы электрического тока. Цель работы: ознакомиться с измерительными приборами, изучить методику измерений постоянных напряжений и токов, определения погрешностей и обработки результатов эксперимента. Теорети...

Русский

2013-01-08

173 KB

71 чел.

Измерение постоянного напряжения и силы электрического тока.

Цель работы: ознакомиться с измерительными приборами, изучить методику измерений постоянных напряжений и токов, определения погрешностей и обработки результатов эксперимента.

  1.  Теоретические сведения
    1.  Виды измерительных приборов

Измерительные приборы разнообразны по назначению, принципу действия, метрологическим и эксплуатационным характеристикам. По форме представления измерительной информации их подразделяют на аналоговые и цифровые.

Аналоговые приборы бывают электромеханическими и электронными. Электромеханический прибор состоит из измерительной цепи 1, измерительного механизма 2 и отсчетного устройства 3. Измерительная цепь 1 служит для преобразования измеряемой физической величины Х (напряжения, силы тока, мощности и т.п.) в некоторую промежуточную электрическую величину Х1 (ток или напряжение), функционально связанную с величиной Х и непосредственно воздействующую на измерительный механизм 2 (делитель напряжения, шунт). Отсчетное устройство 3 содержит шкалу с делениями и указатель (механический – стрелка или световой – пятно). Обобщенная структурная схема такого прибора показана на рис.1.

Рис.1

В целях повышения чувствительности прибора, расширения диапазона измерений величин в сторону малых значений измерительная цепь содержит электронные узлы. Такие приборы, в отличие от обычных аналоговых приборов прямого преобразования, называют электронными.

Цифровым называется прибор, у которого выходной сигнал является цифровым, т.е. содержит информацию о значении измеряемой величины, закодированную в цифровом коде. Структура цифрового прибора во входной части подобна структуре электронного аналогового прибора. Необходимым элементом каждого цифрового измерительного прибора является аналого-цифровой преобразователь (АЦП). АЦП – это измерительное устройство, которое осуществляет автоматическое преобразование размера выходной величины (преимущественно напряжения) входного преобразователя в её цифровое (численное) значение. На выходе цифрового прибора используется цифровое отсчетное устройство, с помощью которого через дешифратор результат измерения представляется в виде цифр и других знаков.

При измерении часто используются приборы, называемые мультиметрами, предназначенные для измерений в различных диапазонах нескольких электрических величин: постоянных и переменных тока и напряжения, электрического сопротивления и т.д.

  1.  Вольтметры

Аналоговые вольтметры постоянного и переменного периодического напряжения строят на базе измерительных механизмов различных типов. Измерительный механизм (ИМ) имеет следующие характеристики: Rм – сопротивление механизма, Ім – ток полного отклонения механизма и следовательно, напряжение полного отклонения стрелки механизма.

.

Если измеряемое постоянное напряжение превышает Uм (Ux>Uм), то включают масштабный преобразователь (делитель) измеряемого напряжения (рис.2). Тогда конечное значение шкалы вольтметра будет Uк = Uм ∙Кмп.


Рис. 2. Электромеханический вольтметр постоянного напряжения

Недостатками вольтметра постоянного напряжения будут малое сопротивление между зажимами вольтметра Rv и недостаточная чувствительность.

Электронный аналоговый вольтметр имеет большее Rv и большую чувствительность за счёт включения электронного масштабного преобразователя с Кмп ≥ 1 (рис. 3).

          

Рис. 3. Электронный вольтметр постоянного напряжения

  1.  Амперметры

Электрический ток в цепи может быть измерен прямыми или косвенными методами. При прямом измерении постоянного тока используется измерительный механизм, имеющий ток полного отклонения Iм и сопротивление Rм. Расширение шкалы (рис.8). до значения Iх производится за счёт включения шунта, сопротивление которого выбирают из условия:

 

Рис. 5. Расширение шкалы амперметра

При косвенном методе измерения значение тока с помощью измерительного преобразователя преобразуют в другую физическую величину, значение которой измеряют. Так при преобразовании значения измеряемого тока в напряжение используют вольтметры, шкала которого градируется в единицах тока.

При Rш << Rv измеряемое

значение тока определится

         .

                    Рис. 6. Косвенное измерение тока.

  1.  Виды измерений

Измерение тока и напряжения в электрической цепи проводят в диапазоне частот от 0 Гц до 1 ГГц. На более высоких частотах эти величины теряют свою однозначность в линии передачи и в её поперечном сечении. По этим причинам на сверхвысоких частотах предпочитают измерять мощность, а не ток и напряжение.

С точки зрения получения значения измеряемой величины по результатам первичных измерений различают прямые и непрямые (косвенные) измерения.

Прямое измерение – это измерение, при котором значение величины Х получают непосредственно по показанию соответствующего прибора Хп; без дополнительных расчетов.

Х= Хп.

Примеры прямых измерений: измерение силы тока – амперметром, напряжения – вольтметром и т.д. При непрямом (косвенном)  методе измерения величины Х определяют по результатам прямых измерений величин  у1, у 2, … у п, которые связаны с нею определенной функциональной зависимостью.

Х = f 1, у 2,… у п)

1.3. Классификация погрешности измерений

Качество измерений тем выше, чем ближе результат измерения  Хi к истинному значению Х.

∆ = Хi  -  Х (1)

Количественной характеристикой качества измерения является погрешность измерения. Погрешность измерительных приборов отражает свойства только самого измерительного устройства, обусловленные структурными схемами, конструктивными особенностями приборов; применяемых в них материалов и элементов, технологии их изготовления, регулировки и градуировки. Следует различать погрешность измерительного прибора (инструментальная погрешность) и погрешность измерения прибором некоторого сигнала. Погрешность прибора – это часть погрешности измерения некоторого сигнала измерительным прибором, обусловленную неидеальностью (несовершенством) средств измерительной техники;  она в определенной степени влияет на точность измерений. Погрешность прибора, определяемая по формуле (1), называется абсолютной. Более наглядное представление о точности измерений дает относительная погрешность прибора, которая рассчитывается по формуле (2)

. (2)

Для сравнения приборов между собой  введено понятие приведенная погрешность прибора , равная отношению его абсолютной погрешности ∆ к значению шкалы Хк, которое принимается равным номинальному значению Хном для приборов с равномерной шкалой:

Если абсолютная погрешность прибора постоянна по всей шкале, то его относительная погрешность существенно увеличивается к началу шкалы. Поэтому целесообразно выбирать прибор (или шкалу прибора) с таким пределом измерения, при котором его указатель при измерении располагается ближе к концу шкалы.

Одной из характеристик прибора является класс точности. Класс точности прибора Кп определяет наибольшую (предельную) допустимую приведенную погрешность прибора в рабочей области шкалы, выраженную абсолютным числом, значение которого равно приведенной погрешности в процентах. По классу точности можно определить наибольшую абсолютную погрешность  ∆, которую может иметь прибор в любой точке шкалы (без учета знака).

Например, при использовании вольтметра со шкалой 0 ÷ 100 В (Хном=100В) класса точности 1.5 на любой отметке его шкалы основная абсолютная погрешность не превышает значения

∆ ≤  ±  Кп Хном  / 100%  = ± 1.5 ∙ 100 / 100% = 1.5 В

При этом она может на отдельных отметках шкалы быть меньше 1.5 В или даже равна нулю. Приведенная погрешность соответствует максимальной относительной погрешности.

Класс точности электроизмерительного прибора устанавливают на заводе при калибровке по образцовому прибору в нормальных условиях. Нормальными условиями  считаются температура окружающей среды (20 ± 5)˚С, относительная влажность (65 ± 15)%, атмосферное давление (100 000 ± 4 00) Па или (760 ± 30) мм рт. ст., напряжение питающей сети 220В ± 2% с частотой 50 Гц.

По зависимости погрешности с измеряемой величиной Х различают аддитивные погрешности (независящие от Х), и мультипликативные (линейно зависящие от Х). Для аналоговых измерительных приборов с аддитивной погрешностью установлены такие классы точности:

К (%) = (1; 1,5; 2; 2,5; 4; 5; 6)∙10n, где n = 1, 0, -1,-2,..

В зависимости от места и причины возникновения  различают такие основные составляющие погрешности от:

  •  несоответствия (неадекватности) модели измеряемого объекта его реальным свойствам и величине;
  •  упрощения математических моделей измерительных преобразований;
  •  взаимного влияния средств измерений и объекта;
  •  несовершенство средств измерений;
  •  влияния внешних факторов на объект и средства измерений;
  •  несовершенства вычислительного алгоритма и обработки результата наблюдения.

2. Погрешности измерения напряжения и тока.

2.1. Измерение напряжения источника

Измерительный прибор (вольтметр) включают параллельно участку цепи, на котором измеряют напряжение Ri – внутреннее сопротивление источника.

При измерении напряжения вольтметром, имеющим входное сопротивление Rv, возникают методическая (систематическая) погрешность и инструментальная (случайная) погрешность.

Рис. 7 Схема включения вольтметра

  1.  методическая обусловлена влиянием измерительного прибора с сопротивлением Rv на значение измеряемого напряжения UИ;
  2.  инструментальная погрешность определяется классом точности прибора и выбранной шкалой.

Абсолютное значение погрешности будет:

.


Относительное значение методической погрешности:

,

где

.

Выполнив преобразования, для относительной методической погрешности получим выражение:

.

Из выражения видно, что чем больше входное сопротивление вольтметра Rv, тем меньше методическая погрешность.

Для определения инструментальной погрешности необходимо знать класс точности прибора КП, который определяется:

, для прибора с аддитивной погрешностью,

, для прибора с мультипликативной погрешностью.

, %, для прибора с мультипликативной погрешностью и нелинейной шкалой,

где UK – конечное значение выбранной шкалы прибора;

UИ – показание прибора на выбранной шкале;

a, b – коэффициенты для выбранной шкалы прибора (определяются по паспорту прибора).

Соответственно, инструментальная погрешность определяется для приборов с аддитивной погрешностью:

,

для приборов с мультипликативной погрешностью (цифра, обозначающая класс точности прибора указывается в кружочке):

,

для приборов с мультипликативной погрешностью и нелинейной шкалой с классом точности a / b: .

Действительное значение напряжения источника определится выражением:

,

где П – поправка на систематическую (методическую) погрешность, равная по значению и противоположная по знаку абсолютной методической погрешности.

В окончательном виде результат измерения напряжения с учетом методической и инструментальной погрешностей записывают в виде:

.

2.2. Измерение силы тока

В электрическую цепь (рис.8а) прибор для измерения тока (амперметр) включается последовательно с нагрузкой RH (рис. 8б). Как и при измерении напряжения, так и при измерении тока амперметром, имеющим сопротивление RA, возникают методическая и инструментальная погрешности.

Рис. 8 Схема включения амперметра.

До включения амперметра через RH протекал ток I, после включения амперметра, имеющего сопротивление RA, в цепи будет протекать измеряемый ток IИ (рис. 8в).

Относительное значение методической погрешности:

, где

,  .

Выполнив преобразования, для относительной методической погрешности получим выражение:

.

Из выражения видно, что методическая погрешность является систематической и её значение тем меньше, чем меньше сопротивление амперметра RA.

Действительное значение тока с учетом поправки на методическую погрешность будет:

,

Преобразовав последнее выражение, для действительного значения тока, протекающего через RH (без включенного амперметра на рис. 11а), получим выражение:

.

Конечное значение результата измерения записывают в виде:

.

2.3. Измерение напряжения на участке цепи

Относительная методическая погрешность измерения в этом случае будет:

, где , ,  .

 

Рис. 9 Измерение напряжения на участке цепи.

После преобразований для относительной методической погрешности получим выражение:

.

Действительное значение напряжения на резисторе с сопротивлением R2 после введения поправки на методическую погрешность будет:

, где UИ – показание вольтметра.

Инструментальная погрешность определяется классом точности и шкалой прибора. Найденное значение напряжения на R2 будет:

.


3. Программа работы:

3.1. Измерение постоянного напряжения (приборами В7-26, Щ4313).

3.1.1. Измерить ЭДС источника питания прибором В7-26.

а)  Подготовка вольтметра В7-26 к измерению напряжения.

Включить “Сеть” прибора. Переключатель рода работы установить в положение “+U” или “-U”. После прогрева (515 минут) закоротить (соединить проводником) входы «U» и «*» прибора (рис. 13). Переключатель поддиапазонов измерения напряжения поставить в положение 0,3(0,1)В. Регулировкой “Устан. «0»” добиться «0» по шкале «U».      Рис. 13                

Затем перевести переключатель поддиапазонов в положение 3(10)В. Снять закоротку.                      

         б) Включить источник питания и установить необходимую величину Э.Д.С.  E.

в) Подключить В7-26 к источнику питания (рис.14). Измерить ЭДС. Записать конечное значение шкалы вольтметра  UK  и его класс точности (указан на лицевой панели).

 

         Рис. 14                                                                                                                        

3.1.2. Измерить ЭДС источника питания прибором Щ4313.

а)  Подготовка мультиметра Щ4313 к измерению напряжения. Включить «Сеть» прибора Щ4313, выбрать род работы «U», выставить “грубую” шкалу.

б)  Подключить Щ4313 к источнику питания (рис.14), выбрать шкалу и  измерить ЭДС. Записать измеренное значение и конечное значение шкалы вольтметра.

Для мультиметра Щ4313 класс точности рассчитать по формуле:

,  a и b определить из таблицы (см. паспорт прибора).

.

3.2. Измерение силы электрического тока в цепи (прибором Щ4313)

Установить на источнике питания рекомендованное значение напряжения E ,

на магазине сопротивлений – величину нагрузки: RH1 (RH2). Не включая источник питания, собрать схему (рис.15). На Щ-4313 нажать клавиши «mA» и «500». Измерить ток в цепи, правильно  выбрав шкалу прибора. Записать IA, IK. По паспорту прибора  определить  коэффициенты a и  b (для   расчёта КП).                     Рис. 15

4. Обработка результатов измерений

4.1.1. Результаты измерений выражаются числом, содержащим значащие цифры. Значащими считаются все цифры в числовом результате, в том числе и нуль, если он находится в середине или в конце числа.

 Пример. Результаты измерения напряжений 121В и 0,00121В содержат три, а 126,05В и 12500В – пять значащих цифр.

В конечной записи результатов измерений следует соблюдать следующие правила округления.

4.1.2 В выражении погрешности удерживается не более двух значащих цифр, причём последняя округляется до нуля или пяти.

Пример. а)  Погрешность измерения тока составляет 0,125А. Удерживая одну значащую цифру, значение погрешности округляется до ±0,1А

б)  Погрешность измерения напряжения составляет 0,152В. Удерживая две значащие цифру, значение погрешности округляется до ±0,15В.

4.1.3 Числовое значение результата измерений должно оканчиваться цифрой или нулем того же десятичного знака, что и значение погрешности.

 Пример. 125,832 ± 0,15 записывается 125,83 ± 0,15.

4.1.4 Если первая отбрасываемая цифра меньше пяти, то последняя удерживаемая цифра не изменяется.

 Пример. (125,721 ± 0,2)В округляется до (125,7 ± 0,2)В.

4.1.5 Если первая отбрасываемая цифра больше пяти или равна пяти, то последняя удерживаемая цифра увеличивается на единицу.

 Пример. 25,268 ± 0,4 округляется до 25,3 ± 0,4;

      25,253 ± 0,3 округляется до 25,3 ± 0,3.

4.1.6 Если первая отбрасываемая цифра равна пяти и за ней не следует значащих цифр (или следуют только нули), то округление производится до ближайшего четного.

 Пример. 10,650 ± 0,3 округляется до 10,6 ± 0,3;

      10,550 ± 0,3 округляется до 10,6 ± 0,3.

4.2. Обработка результатов  измерения напряжения

4.2.1. Вычислить инструментальную погрешность и записать результат измерений с её учетом: .

4.2.2. Найти методическую погрешность: , где Ri = 5 Ом,    

RVB7-26 = 30 МОм, =1МОм.

4.2.3. Определить поправку и погрешность поправки по формулам:

 ; .

4.2.4. Результат с учётом инструментальной и методической погрешности записывается в виде:

.

 4.3. Обработка результатов  измерения тока

4.3.1.  Записать результат с учётом инструментальной погрешности.

   .

4.3.2.  Найти методическую погрешность:

   .

4.3.3.  Определить поправку и погрешность поправки:

  ; .

4.3.4.  Результат с учётом инструментальной и методической погрешности записывается в виде:

   .

5. Сделать выводы

PAGE  14


X

X1

X

α

3

1

2

МП

ИМ

Кмп ≤ 1

Ux

МП

ИМ

Кмп ≤ 1

Ux

МП

Кмп ≥ 1

Выбор шкалы вольтметра

RМ

RШ

IШ

М

IХ

ИМ

RШ

Ix

Ix

RV

pV

Ri

E

в)

Rv

I

+

-

Ri

E

a)

+

-

Ri

E

б)

РV

+

-

R EMBED Equation.3  

E

a)

RH

I

R EMBED Equation.3  

E

б)

RH

pA

IИ

R EMBED Equation.3  

E

в)

RH

IИ

RА

R1

E

г)

RЭ

R1

E

в)

R2

RV

R1

E

б)

R2

pV

R1

E

a)

R2

U

*

ИП

+

-

В7-26,

Щ4313

U

*

Е

+

А

RH


 

А также другие работы, которые могут Вас заинтересовать

36416. Типовые способы настройки контуров в системах подчиненного регулирования 17.06 KB
  Типовые способы настройки контуров в системах подчиненного регулирования. Оптимизация контура – выбор такого закона регулирования и параметров этого закона который в наибольшей степени соответствует требованиям статическим и динамическим характеристикам контура регулирования. Определение вида звена регулирования П И ПИ который обеспечивает наилучшие статические и динамические характеристики. Определение параметров регулирования постоянной времени коэффициента усиления и т.
36417. Критерий абсолютной устойчивости В.М.Попова 56.49 KB
  Критерий Попова в геометрическом варианте: для абсолютной устойчивости состояния равновесия НСАУ с устойчивой линейчатого и нелинейчатого характеристика которой лежит в секторе 0к достаточно чтобы модифицированный годограф Попова целиком лежал справа от прямой проходящей через точку 1 к j0с произвольным угловым коэффициентом 1 х. Обобщенный критерий Попова на случай нейтральной или неустойчивой линейной части: в этом случае корень характеристического уравнения линейной части имеет либо = 0 корень либо хотя бы 1 полис расположенный в...
36418. Физическая природа постоянных времени и времени запаздывания в моделях технологических объектов. Одноемкостные и многоемкостные объекты 12.92 KB
  Физическая природа постоянных времени и времени запаздывания в моделях технологических объектов. Физическая природа постоянных времени – электрическая индукция емкость; лампочка – идеальная нагрузка постоянная времени и временя запаздывания приближенно равны нулю и механическая: масса и момент инерции. Постоянная времени связана с теплоемкостью и с теплообменом. природа времени запаздывания – транспортная транспортер.
36419. Приведите классификацию и поясните сущность методов технической линеаризации 38.16 KB
  На выходе звена эта составляющая отфильтровывается низко частотной линейной частью системы.3 если А→∞ z0 x0 становится линейной во всем диапазоне изменения х. Для нелинейности типа зоны нечувствительности наложение на входной сигнал хn последованности импульсов прямоугольной формы с амплитудой А=n делает для постоянной составляющей х0 нелинейную характеристику линейной на участке шириной n12 посл. Она становится линейной уже при А=а.
36420. Электропривод и его место в структуре АСУТП 12.7 KB
  способы обеспечивают контроль за текущим состоянием объекта эффективные алгоритмы управления точные математические модели объектов быстродействие современных средств обработки информации позволяет быстро рассчитать величины управляющих воздействий и выдать их на объект. В настоящее время все больше для управления ЭП используют УВМ и микропроцессоры. При этом функции управления ЭП принимают на себя ВУ АСУТП обычно это МП или микроЭВМ связанные с ЭВМ более высокого уровня. При этом схема управления ЭП содержит только усилительные узлы и...
36421. Символьные вычисления в MatLab 357.5 KB
  Исследование скорости роста символьной функции описывающей некоторые параметры модели объекта анимированная визуализация полученной характеристики. здесь f1 имя функции х имя переменной вводится как строка в апострофах по которой производится дифференцирование n порядок производной. здесь f1_new имя функции х имя переменной вводится как строка по которой производится интегрирование. Здесь f1 имя функции переменной n порядок остаточного члена x имя переменной вводится как строка в апострофах по...
36422. Математические модели геометрического проектирования 312.5 KB
  Для автоматизации процесса построения Rфункции плоского геометрического объекта в виде точечного множества с шагом h можно предложить следующий алгоритм точки принадлежащие объекту отобразить в виде красных точек: А. Тогда по свойству Rфункции имеем Значит в точке с координатами xy рисуем красную точку если Pxy=0. Пример построения поверхности 0уровня Ффункции двух прямоугольников нахождение геометрического места точек касания объектов S1 и S2 1. Тогда поверхность 0уровня Ффункции двух прямоугольников задается четырьмя...
36423. Компьютерное моделирование процессов финансового рынка 292.5 KB
  При нажатии на кнопку Запрос Request вы получите котировки для совершения сделки: Кнопки Купить Buy и Продать Sell стали активными. По правой котировке можно купить Buy а по левой котировке продать Sell. Если в течение этого промежутка времени не было принято решение о сделки то кнопки Купить Buy и Продать Sell снова станут неактивными. Это говорит о том что вы или пытаетесь выставить ордер слишком близко к текущей цене ближе чем величина спрэда по данному инструменту либо неверно выбрали тип ордера Buy Limit Buy Stop...
36424. Компьютерное моделирование физических процессов 161.5 KB
  При этом судьба каждой частицы разыгрывается с помощью случайного выбора а полученные для множества частиц результаты подвергаются статистической обработке. Метод применяется например при проектировании ядерных реакторов детекторов частиц на ускорителях и обработке получаемых результатов а также во многих других случаях скажем при исследовании распространения мутаций в среде живых организмов. Мы будем изучать естественно очень простой вариант задачи прохождение пучка тяжелых частиц через слой газа состоящего из легких...