68305

Область применения и конструкция коммутационных аппаратов дистанционного действия

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Аппаратура служащая для дистанционного включения выключения или переключения электрических цепей на значительном расстоянии от служебных помещений контакторы и реле; аппараты этой группы приводятся в действие при помощи кнопок выключателей датчиков или защитной аппаратуры...

Русский

2014-09-21

858 KB

2 чел.

Область применения и конструкция коммутационных аппаратов дистанционного действия.

Коммутационная аппаратура — это электрические устройства, с помощью которых осуществляют включение, выключение и переключение электрических цепей.

Аппаратура, служащая для дистанционного включения, выключения или переключения электрических цепей на значительном расстоянии от служебных помещений (контакторы и реле); аппараты этой группы приводятся в действие при помощи кнопок, выключателей, датчиков или защитной аппаратуры и могут быть установлены , там где это удобно, из условий монтажа соответствующих электрических цепей.

Контакторы. –это управляемый на расстоянии выключатель, предназначенный для замыкания и размыкания под нагрузкой электрических цепей. В зависимости от рода тока различают контакторы постоянного или переменного  тока.По виду конструкции электромагнитной системы контактора могут быть с поворотным или прямолинейно движущимся якорем (прямоходовой).

Контакторы прямоходового типа  (рис. 6 1) рассчитаны преимущественно на меньшие номинальные токи и более легкие условия работы При подаче напряжения на катушку 3 якорь 4, преодолевая действие пружины, притягивается к сердечнику и перемещает вниз траверсу 5 с силовыми мостиковыми контактами 6 и с кронштейном 7. Контактное нажатие создают пружины каждого мостика. Отключение контактора происходит под действием пружин 2 и 9 при снятии напряжения с катушки. Пружины перемещают якорь 4 и траверсу 5 с мостиковыми контактами 6 вверх .

Контакторы выполняют однополюсными и многополюсными, с замыкающими или размыкающими контактами, с главными и вспомогательными. На средний сердечник Ш-образного магиитопровода / насажена включающая катушка 3. Якорь 4, жестко скрепленный с траверсой 5, постоянно отжимается вверх пружинами 2 и 9. С траверсой соединены силовые мостиковые контакты 6. Вспомогательные контакты 8 переключаются кронштейном 7.Основными параметрами контакторов являются напряжение включения (втягивания якоря), напряжение отключения, собственное время включения, которое для контакторов постоянного тока равно 0,05—0,3 с, а переменного — 0,03—0,07 с, собственное время отключения — для контакторов постоянного тока 0,07—0,12 с, переменного — 0,02—0,08 с.Отношение напряжения отключения к напряжению включения называется коэффициентом возврата контактора:   Кв = Uоткл/Uвкл.Контакторы постоянного и переменного тока рассчитаны на номинальные напряжения 50; 110; 380 и 3000 В и на номинальные токи от 10 до 160 А. 

Рис.61 Контактор прямоходового типа                                                        Рис.62 Схема теплового реле

 

Контактор поворотного типа Основными частями контактора (рис. 60) являются: изоляционная плита 10, магнитопровод 1Г состоящий из Г-образного ярма и сердечника; втягивающая катушка 2, укрепленная на сердечнике; дугогасительное устройство 3, главные контакты — неподвижный 4, подвижной 5 и вспомогательные 9; поворотный якорь 7.Главные контакты контактора служат для переключения силовых электрических цепей (цепей электродвигателей, преобразователей, электропечей, электрокалориферов и пр.); вспомогательные предназначены для переключения цепей управления и сигнализации. Нажатие главных контактов регулируется пружиной 6. Настраивают контактор па срабатывание с помощью отключающей пружины 8.Соприкосновение контактов 4 и 5 друг с другом и замыкание цепи при включении контактора произойдет раньше, чем якорь электромагнита полностью притянется к полюсу. По мере движения якоря подвижной контакт 5 будет как бы «проваливаться», упираясь в неподвижный контакт 4 и сжимая пружину.

Раствором контактов называется расстояние между подвижным и неподвижным контактами в отключенном состоянии контактора. Раствор контактов обычно составляет 1—20 мм.

Соприкосновение контактов друг с другом и замыкание цепи при включении контактора произойдет раньше, чем якорь электромагнита полностью притянется к полюсу. По мере движения якоря подвижной контакт  будет как бы «проваливаться», упираясь в неподвижный контакт  и сжимая пружину.

Провал контактов, т. е. смещение подвижного контакта от уровня точки его касания с неподвижным, необходимым для обеспечения надежного включения. Практически провал контактов определяют по перемещению контактного рычага  от начала соприкосновения контактов до окончания процесса включения(за счет сжатия контактной пружины).

После соприкосновения контактов происходит перекатывание подвижного контакта по неподвижному с проскальзыванием. Пружина создает необходимое нажатие в контактах, поэтому при перекатывании происходит взаимная зачистка контактных поверхностей от окисной пленки, нагара и загрязнений. Все это уменьшает переходное сопротивление контактов и улучшает условия их работы.

Притирание - это процесс перекатывания контактов и их взаимного скольжения. 

Реле. Для переключения электрических цепей управления, сигнализации и др., по которым протекают малые токи, широко используют различные электромагнитные реле. Обычно реле передают команды (сигналы) другим аппаратам. Численное значение параметра, на которое настраивается реле и при котором срабатывает, называется уставкой реле. На пассажирских вагонах применяются различные по своему назначению реле.

Промежуточные реле — управляют включением других электрических аппаратов с более мощными контактами.

Реле времени — это такие реле, у которых замыкание и размыкание контактов происходит с определенной выдержкой времени от момента подачи сигнала на срабатывание; они используются в различных цепях автоматизации для обеспечения определенных интервалов при пуске и остановке оборудования.

Реле напряжения срабатывает, когда напряжение на его обмотке окажется выше (реле максимального    напряжения)   или ниже (реле минимального напряжения) заданного.

Дифференциальное реле реагирует на разность двух параметров, например, токов, поступающих от двух контролируемых объектов.

Поляризованные реле отличаются быстродействием, высокой чувствительностью и способностью реагировать на направление тока в катушке, что достигается вследствие включения в его магнитную цепь постоянного (поляризующего) магнита.

Токовые реле во взаимодействии с контакторами защищают (отключают) потребители электроэнергии (двигатели, трансформаторы, нагреватели и т. д.) от длительных относительно небольших перегрузок, а также от мгновенных бросков тока (коротких замыканий).Защита от длительных перегрузок достигается тепловыми расцепителями, от мгновенных бросков тока — максимальными расцепителями. Последние могут отсутствовать, а токовое реле в этом случае называют тепловым реле.

Тепловые реле по своей конструкции могут быть регулируемыми по току нагрузки и нерегулируемыми, а также с блокировкой от повторного включения и без нее. Тепловые реле могут непосредственно встраиваться в контакторы или в магнитные пускатели. Схема теплового реле показана на рис. 62. Основным элементом теплового реле является биметаллическая пластина 3, которая нагревается от надетой на нее спирали 2. Через эту спираль проходит ток нагрузки защищаемой цепи. При протекании повышенного тока пластина прогибается вправо, перемещая своим верхним концом шток 4, который давит на рычаг 5. Последний поворачивается по часовой стрелке, преодолевая силу пружины 6, и размыкает контакты 7. Зажимы 1 служат для подключения реле к защищаемой цепи, а зажимы 8 — для включения контактов реле в цепь питания катушки контактора.

Реле обратного тока (РОТ) служит для автоматического подключения генератора к системе электроснабжения вагона и его отключения. Оно подключает генератор, когда его напряжение становится выше напряжения аккумуляторной батареи. При этом предполагается, что в момент включения РОТ генератор может отдать номинальную мощность.реле обратного тока отключает генератор тогда, когда напряжение генератора становится меньше напряжения аккумуляторной батареи, т. е. когда ток в его цепи изменит направление и достигнет определенного значения.

Л 10                                                                                                                                                               2 - 2


 

А также другие работы, которые могут Вас заинтересовать

33240. Магни́тное по́ле 13.55 KB
  Принцип работы асинхронного электродвигателя основан на взаимодействии вращающегося магнитного поля возникающего при прохождении трехфазного переменного тока по обмоткам обмоткам статора с током индуктированным полем статора в обмотках ротора в результате чего возникают механические усилия заставляющие ротор вращаться в сторону вращения магнитного поля при условии что частота вращения ротора n меньше частоты вращения поля n1 .
33241. Электромагнит 13.3 KB
  Обычно электромагнит состоит из обмотки и ферромагнитного сердечника который приобретает свойства магнита при прохождении по обмотке ток Регулирование скорости асинхронного двигателя Наиболее распространены следующие способы регулирования скорости асинхронного двигателя: изменение дополнительного сопротивления цепи ротора изменение напряжения подводимого к обмотке статора двигателя изменение частоты питающего напряжения а также переключение числа пар полюсов. Регулирование частоты вращения асинхронного двигателя путем введения...
33242. Закон полного тока 13.38 KB
  2Преимущества асинхронных электродвигателей с короткозамкнутым ротором следующие: приблизительно постоянная скорость при разных нагрузках; возможность кратковременных механических перегрузок; простота конструкции; простота пуска и легкость его автоматизации; более высокие соs j и к. чем у двигателей с фазным ротором. Практически асинхронные электродвигатели с короткозамкнутым ротором применяются в тех случаях когда не требуется регулирования скорости вращения двигателя. Преимущества асинхронных электродвигателей с фазным ротором: большой...
33243. Закон ома для магнитной цепи 12.92 KB
  Когда по катушке состоящей из до витков проходит ток I то он возбуждает магнитный поток Ф величина которого будет тем больше чем больше будет число ампервитков Iw. Произведение тока I на число витков w намагничивающая сила измеряется в амперах.
33244. Ферромагнитные материалы 13.25 KB
  Вращаясь вместе с ротором относительно статора поток в соответствии с законом электромагнитной индукции ЭМИ индуцирует в каждой фазе обмотки статора ЭДС . При замкнутой внешней цепи по обмоткам статора протекает ток нагрузки I который в свою очередь образует МДС статора . МДС создает магнитный поток реакции якоря и поток рассеяния аналогичный асинхронному двигателю который замыкается поперёк пазов статора и вокруг лобовых частей обмотки статора. Потоки и наводят в обмотке статора соответственно ЭДС и .
33245. Гистерезис 13.81 KB
  Электрические потери Рэл возникают в обмотках трансформатора и обусловлены их нагреванием при протекании по ним электрического тока. КПД трансформатора определяется как отношение активной мощности на выходе трансформатора к активной мощности на выходе первичной обмотки. КПД трансформатора зависит: 1 от конструкции трансформатора; 2 от степени загрузки трансформатора рис 4.9 Максимальный КПД будет у трансформатора с коэффициентом загрузки β = 045.
33246. Потенциал электростатического поля 13.32 KB
  Потенциал электростатического поля скалярная величина равная отношению потенциальной энергии заряда в поле к этому заряду: энергетическая характеристика поля в данной точке. Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность. Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.
33247. Зако́н Куло́на 13.12 KB
  μετρεω измеряю измерительный прибор предназначенный для определения мощности электрического тока или электромагнитного сигнала. В цепях постоянного тока мощность измеряют электро или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения измеренных амперметром и вольтметром. В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим ферродинамическим или индукционным ваттметром.
33248. Электри́ческое сопротивле́ние 13.23 KB
  Из систем многофазного тока наибольшее применение на практике получил трехфазный переменный ток.