68398

Теплопередача через однослойную цилиндрическую стенку (Г.У. 3-го рода)

Лекция

Физика

Плотность теплового потока на внутренней и наружной поверхности оболочки определяется следующими формулами - коэффициент теплопередачи отнесенный к внутренней поверхности цилиндрической оболочки. На практике часто встречаются оболочки толщина стенок которых мала по сравнению с внешним диаметром.

Русский

2014-09-21

218.5 KB

12 чел.

 Лекция 8.

Теплопередача через однослойную цилиндрическую стенку (Г.У. 3-го рода).

                     

                                               

                         d1

                    d2

Рассмотрим процесс теплопередачи стационарный , то тепловой поток передаваемый от горячей жидкости поверхности

Используя решения предыдущих задач для линейности теплового потока

                                               

  

Плотность теплового потока на внутренней и наружной поверхности оболочки определяется следующими формулами

- коэффициент теплопередачи отнесенный к внутренней поверхности цилиндрической оболочки .

На практике часто встречаются оболочки толщина стенок которых мала по сравнению с внешним диаметром.

Разложим функцию  в степенной ряд

в этом случае можно ограничится первым членом разложения

подставим формулы   и  

таким образом для тонких оболочек когда цилиндрическая стенка примерно эквивалентна плоской стенке и в практических расчетах для определения количества теплоты переданной через цилиндрическую стенку можно пользоваться упрощенной формулой которой коэффициент теплопередачи рассчитывается как для плоской стенки

то погрешность не будет превышать 4%, поэтому  (при этом в формулу теплового потока в том случае если .

Температурное поле определяется из уравнения 2 системы ,с помощью которого можем определить неизвестные температуры  на поверхности, считая линейную плотность теплового потока известной

Теплопередача через многослойную цилиндрическую стенку.

Для многослойной цилиндрической стенки при использовании контактного термического сопротивления между слоями очевидно можно использовать следующие соотношения

Теплопроводность сферической стенки при Г.У. 1-го рода.

                                     t          

                                     t                            

                                                                                    Q   

                                                                                                         d,r

                                                    d2

                                                        d1

Пусть имеется полный шар радиусами  и с постоянными коэффициентами теплопроводности и с заданными равномерно распределенными температурными поверхностями  и .

Т.к. в рассматриваемом элементе температура изменяется только в направлении радиуса то дифференциальное уравнение теплопроводности в сферических координатах примет вид :

(1)      

(2) Г.У.     

После первого интегрирования уравнения (1) получим

после второго интегрирования уравнения (1)

      (3)

Постоянные интегрирования в уравнении (3) определяются из граничных условий (2).

При этом получим

Подставим значение   и   в уравнение (3) получим выражение для температурного поля    (4)

Для нахождения количества теплоты, проходящей через шаровую поверхность площадью  в ед. времени , можно воспользоваться законом Фурье

Если подставить значение

Теплопроводность при стационарном режиме внутренних источников теплоты.

Теплопроводность  пластины при Г.У.  3-го рода (с внутренним источником теплоты).

                                  t

                                     

                                                

                                         

                               0            

                                   

Пластина равномерно с двух сторон охлаждается жидкостью температура которой постоянна .

Необходимо найти температурное поле пластины и количество теплоты отводимое от пластин в процессе охлаждения .

При данных условиях очевидно температура будет изменятся только в направлении оси  .

 (1)

Сформулируем условия однозначности

1.

2.

3.

4.     

Очевидно задача является симметрична плоскости .

Поэтому для упрощения мы можем рассматривать только правую

            (2)

(3)

Проинтегрируем дважды исходное дифференциальное уравнение.

    (1)

             

                     (4)

     (5)

воспользуемся граничными условиями для определения констант интегрирования.

Из граничных условий (2)-(4) следует

              

          (6)

Используем уравнение (4) запишем выражение для  на поверхности пластины

                  

            (8)

 


 

А также другие работы, которые могут Вас заинтересовать

13146. ВИВЧЕННЯ ШИФРІВ, ХАРАКТЕРУ ТА КОДУВАННЯ ЗНОСУ ТРИШАРОШКОВИХ ДОЛІТ. КОДУВАННЯ ЗНОСУ АЛМАЗНИХ ДОЛІТ 52 KB
  Лабораторна робота № 3 ВИВЧЕННЯ ШИФРІВ ХАРАКТЕРУ ТА КОДУВАННЯ ЗНОСУ ТРИШАРОШКОВИХ ДОЛІТ. КОДУВАННЯ ЗНОСУ АЛМАЗНИХ ДОЛІТ Мета роботи: вивчити методику описання зносу шарошкових та алмазних доліт. Теоретичні відомості Ретельне вивчення зносу озброєння та ...
13147. БУДОВА ТА КОНСТРУКТИВНІ ОСОБЛИВОСТІ КОЛОНКОВИХ ДОЛІТ ТА ДОЛІТ СПЕЦІАЛЬНОГО ПРИЗНАЧЕННЯ 1.93 MB
  ЛАБОРАТОРНА РОБОТА № 4 БУДОВА ТА КОНСТРУКТИВНІ ОСОБЛИВОСТІ КОЛОНКОВИХ ДОЛІТ ТА ДОЛІТ СПЕЦІАЛЬНОГО ПРИЗНАЧЕННЯ Мета роботи: вивчення будови та особливостей застосування доліт для відбору керна та доліт спеціального призначення 1 Теоретичні відомості КОЛО
13148. БУДОВА, КОНСТРУКТИВНІ ОСОБЛИВОСТІ ОСНОВНИХ ВУЗЛІВ ТА ПРИНЦИП ДІЇ ТУРБОБУРІВ ТА ХАРАКТЕРИСТИКА ЇХ ТУРБІНИ 445.5 KB
  ЛАБОРАТОРНА РОБОТА №5 БУДОВА КОНСТРУКТИВНІ ОСОБЛИВОСТІ ОСНОВНИХ ВУЗЛІВ ТА ПРИНЦИП ДІЇ ТУРБОБУРІВ ТА ХАРАКТЕРИСТИКА ЇХ ТУРБІНИ. Мета роботи: вивчити будову область застосування та принцип роботи турбобурів. Теоретичні відомості Для буріння нафтових і газо
13149. БУДОВА, КОНСТРУКТИВНІ ОСОБЛИВОСТІ, ПРИНЦИП ДІЇ ТА ХАРАКТЕРИСТИКА ГВИНТОВИХ ВИБІЙНИХ ДВИГУНІВ 224 KB
  ЛАБОРАТОРНА РОБОТА №6 БУДОВА КОНСТРУКТИВНІ ОСОБЛИВОСТІ ПРИНЦИП ДІЇ ТА ХАРАКТЕРИСТИКА ГВИНТОВИХ ВИБІЙНИХ ДВИГУНІВ Мета роботи: вивчити будову область застосування та принцип роботи гвинтових вибійних двигунів. Принцип дії За принципом дії гвинтові двигуни
13150. БУДОВА, КОНСТРУКТИВНІ ОСОБЛИВОСТІ ЕЛЕКТРОБУРА. ХАРАКТЕРИСТИКА ЕЛЕКТРОБУРА. СИСТЕМА СТРУМОПІДВЕДЕННЯ ТА ЗАХИСТ ВІД ПОПАДАННЯ ПРОМИВАЛЬНОЇ РІДИНИ 216.5 KB
  ЛАБОРАТОРНА РОБОТА №7 БУДОВА КОНСТРУКТИВНІ ОСОБЛИВОСТІ ЕЛЕКТРОБУРА. ХАРАКТЕРИСТИКА ЕЛЕКТРОБУРА. СИСТЕМА СТРУМОПІДВЕДЕННЯ ТА ЗАХИСТ ВІД ПОПАДАННЯ ПРОМИВАЛЬНОЇ РІДИНИ. Мета роботи: вивчити будову область застосування та принцип роботи електробурів. Теоретичн
13151. ВИВЧЕННЯ ПРИЛАДІВ КОНТРОЛЮ ПАРАМЕТРІВ РЕЖИМУ БУРІННЯ ТА РОЗШИФРУВАННЯ ІНДИКАТОРНИХ ДІАГРАМ 413 KB
  ЛАБОРАТОРНА РОБОТА №8 ВИВЧЕННЯ ПРИЛАДІВ КОНТРОЛЮ ПАРАМЕТРІВ РЕЖИМУ БУРІННЯ ТА РОЗШИФРУВАННЯ ІНДИКАТОРНИХ ДІАГРАМ. Поточний контроль параметрів процесу буріння здійснюється за допомогою індикатора ваги манометра моментоміра тахометра а також приладів для ви
13152. Робота із стандартними програмами ОС Windows. Конфігурування ОС Windows 439 KB
  ЛАБОРАТОРНА РОБОТА № 1 Тема: Робота із стандартними програмами ОС Windows. Конфігурування ОС Windows 2. Мета: формування практичних навичок по роботі зі стандартними програмами Windows – WordPad Проводник; формування практичних навичок по роботі з основними об’єктами ...
13153. Робота з файловою системою в операційній системі Windows 93.5 KB
  ЛАБОРАТОРНА РОБОТА № 2 Тема: Робота з файловою системою в операційній системі Windows. 2. Мета: формування практичних навичок по роботі з основними об’єктами Windows – вікнами файлами папками ярликами. 3. План: Ознайомитись з теоретичними відомостями; ...
13154. Робота з засобами захисту інформації від вірусів 194.5 KB
  ЛАБОРАТОРНА РОБОТА № 3 Тема: Робота з засобами захисту інформації від вірусів Мета: ознайомитися з антивірусною програмою NOD32. Навчитися налагоджувати програму організовувати захист комп’ютера від вірусів План: Ознайомитись з теорети