68403

Промежуточные (вторичные, нормирующие) преобразователи

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Метод уравновешивающего преобразования характеризуется тем что в приборах используется две цепи преобразования: прямая и обратная роли которых резко отличаются. Цепь прямого преобразования служит для обнаружения степени неравновесия.

Русский

2014-09-22

145.5 KB

11 чел.

Лекции 14

Лекция № 14

промежуточные (вторичные, нормирующие) преобразователи

Большинство датчиков (первичных преобразователей) имеют на выходе сигнал, неудобный для передачи на расстояние или формируют неунифицированный сигнал.

При разработке измерительных схем следует придерживаться следующих правил:

  •  вне зависимости от природы сигнала датчика (Д) с помощью промежуточных преобразователей (ПП) переводят сигнал в унифицированный, особенно если исходный сигнал – механическое перемещение;

Д ПП «унифицированный сигнал»

  •  если сигнал с датчика неунифицированный электрический, то системой ГСП допускается его использование (например, от термосопротивлений, термопар) во избежании усложнения структуры измерительной цепи; в этом случае используются специализированные измерительные приборы;

ТП, ТС «неунифицированный сигнал»  специальный ИП

  •  В случае ограничений, накладываемых категорийностью  предприятия (взрыво- и пожароопасность) передача сигнала в цепи ДПП (в пределах зоны) рекомендуется осуществлять по пневматической линии связи, далее передачу можно вести любым унифицированным сигналом.

Д ПП1 «пневмат. сигнал» ПП2 «электрич сигнал»

 Для повышения точности измерения ПП строятся по схеме нулевого метода измерения с автоматическим уравновешиванием. Такие схемы действуют по принципу автоматических следящих систем (автоматические компенсаторы).

Метод уравновешивающего преобразования характеризуется тем, что в приборах используется две цепи преобразования: прямая и обратная, роли которых резко отличаются.

Цепь прямого преобразования служит для обнаружения степени неравновесия.

Назначение цепи обратного преобразования заключается в том, чтобы, используя энергию прямого преобразования, создать уравновешивающую величину (меру) ХМ, однородную с измеряемой величиной ХИЗМ.

В результате этого уравновешивания на вход прямой цепи преобразования поступает только часть входной величины Х. Погрешность такого метода определяется погрешностью в обратной цепи.

Примеры схем преобразователей, построенных на компенсационной схеме

1. Пневмосиловой преобразователь

1 – рычаг;

2 – дроссель сопло-заслонка;

3 – постоянный дроссель;

4 – пневмоусилитель;

5 – сильфон обратной связи;

6 – корректор нуля.

На входе преобразователя – сила, приложенная к левому плечу рычага (а).

На выходе – давление сжатого воздуха (РВЫХ) на выходе усилителя мощности.

За счет подбора постоянного дросселя обеспечивается равенство давления питания унифицированному значению 0,14 МПа.

Принцип работы.

Вращающий момент М=f(FВХ) на входе преобразователя создается входным усилием. Противоположно направленный момент меры ММ=f(FM) создается на правом плече рычага (в) сильфоном обратной связи. Результирующий момент М=М-ММ вызывает поворот рычага (1) и перемещение l, расположенной не его правом плече заслонки преобразователя сопло-заслонка (2-3).  Изменение давление на выходе элементарного преобразователя, пропорциональное перемещению заслонки после усилителя мощности (4) становится выходным сигналом всего преобразователя.  Одновременно давление с выхода усилителя подается с цепь обратной связи (5).

Окончанием преобразования является достижение величиной М нулевого значения.

Корректор нуля применяется для настройки схемы. А именно, изменяя натяжение пружины можно создавать дополнительный вращающий момент на рычаге и тем самым изменять величину выходного сигнала. При наладке схемы корректором устанавливается начальное значение выходного сигнала 0,02 МПа при нулевом значении силы.

 Статическая характеристика преобразователя линейная.

В промышленности часто выпускается в едином корпусе с первичным преобразователем.

2. Преобразователь электрического сопротивления в ток

1 – усилитель прямого преобразования;

2 – усилитель обратного преобразования;

3 – переменное сопротивление (термо- или тензосопротивление);

4 – неуравновешенный мост;

5 – преобразователь напряжения в ток.

На входе преобразователя – изменение электрического сопротивления (Rt).

На выходе – изменение тока.

Принцип работы.

Напряжение в измерительной диагонали неуравновешенного моста (4) подается на вход преобразователя UI (5), далее - на вход усилителя цепи прямого преобразователя (1). На выходе усилителя формируется токовый сигнал (унифицированный 0..5мА), который является выходным сигналом всего преобразователя. Далее токовый сигнал поступает на вход усилителя (2)  цепи обратного преобразования, на выходе которого вырабатывается напряжение меры.

Завершение процесса преобразования наступает после достижения величиной разности измеряемого напряжения и напряжения меры нулевого значения U = UUM = 0.

Характеристика блока линеаризации выбирается такой, чтобы скомпенсировать нелинейность статической характеристики неуравновешенного моста.

измерительыне приборы

Предназначены для преобразования измеряемых сигналов в перемещение стрелки или пера относительно шкалы.

Классификация измерительных приборов:

  1.  По метрологическому признаку

Технические

Лабораторные

Образцовые

Для работы в производственных помещениях, поэтому должны быть недорогими и надежными в эксплуатации. У них нет поправки на погрешность изменения.

Класс точности: 0,25…2,5

Для точных измерений в лабораторных условиях.

Для повышения точности измерения в них вводится поправка на внешние условия.

Класс точности:

0,05; 0,1; 0,2

Для поверки технических и лабораторных приборов.

Класс точности:

0,005; 0,02; 0,05

  1.  По способу измерения

Измерительные приборы непосредственной оценки

Измерительные приборы следящего уравновешивания

  1.  По виду выходного сигнала

1. Давление сжатого воздуха

Системы СТАРТ, ЦЕНТР

2. Напряжение постоянного тока

Милливольтметры, потенциометрические компенсаторы (КСП)

3. Токовые сигналы и унифицированные сигналы напряжения

Компенсаторы с унифицированным токовым сигналом и сигналом напряжения на входе (КСУ)

4. Электрическое сопротивление

Логометры, компенсаторы с мостовой схемой (КСМ)

5. Напряжение переменного тока

Компенсаторы с дифференциально-трансформаторным преобразователем на входе (КСД)

  1.  По числу точек измерения

Одноточечные

3-х точечные

6-ти и 12-ти точечные

В многоточечных приборах осуществляется отображение мгновенного значения всех параметров. В приборах регистрирующих значения во времени на бумажном носителе запись ведется только по одному параметру с возможностью переключения на запись поочередно

  1.  По виду выходного сигнала

1. Показывающие

Величина измеряемого параметра указывается отчетным устройством (шкала, стрелка).

Достоинства: простота конструкции.

Недостатки: индикация только в текущий момент времени.

Конструктивное оформление:

  •  с неподвижной шкалой и подвижной стрелкой;
  •  с подвижной шкалой и неподвижной стрелкой (уменьшенный фронтальный размер).

2. Самопишущие

Снабжены устройством для автоматической записи результатов измерения во времени.

Запись ведется на бумажной ленточной диаграмме, которая движется с постоянной скоростью или на дисплее с записью информации на жесткий носитель.

3. Интегрирующие

Использование дополнительного устройства с функцией непрерывного суммирования мгновенных значений измеряемого параметра (счетчик).

4. Комбинированные

Возможность одновременной записи и индикации значений измеряемого параметра, а также дополнительно: сигнализации отклонений параметра, преобразования сигнала, регулирования, интегрирования и т.д.

Для повышения точности измерения строятся, как и промежуточные преобразователи по нулевому методу измерения.

Примеры схем вторичных показывающих и регистрирующих приборов, построенных на компенсационной схеме

  1.  Прибор для записи пневматического сигнала

1 – рычаг;

2 – элементарный преобразователь сопло-заслонка;

3 – постоянный дроссель;

4 – мембрана;

5 – рычаг;

6 – леска;

7 – отсчетное устройство;

8 – корректирующий винт;

9 – пружина обратной связи;

10 – сильфон.

Прибор типа ПВ (пневматический вторичный прибор) применяется для измерения любых технологических параметров, предварительно преобразованных в давление сжатого воздуха.

 Измерительная цепь состоит из четырех преобразователей:

1 . Преобразование давление Р в силу FВХ, приложенную к рычагу сильфон 10.

2 . Преобразование силы FВХ в момент МВХ – большее плечо рычага 1- а  рычаг 1.

3. Следящая цепь – преобразование момента МВХ в перемещение стрелки l1  1 – 7.

4 . Цепь обратной связи FМ  пружина 9 и меньшее плечо рычага 1- в.

Принцип работы -

близок к принципу работы преобразователя силы в давление.

Рабочее давление Р, преобразованное через момент МВХ(FВХ) в перемещение l преобразователем сопло-заслонка 2-3, вызывает прогиб мембраны 4, связанной с левым плечом рычага 5. При этом правый конец рычага 5 тянет, связанную с ним леску 6, вызывая тем самым перемещение l1 (растяжение) пружины обратной связи 9 и стрелки отсчетного устройства 7. Это перемещение l1 является одновременно  выходным сигналом следящей системы и сигналом цепи обратной связи.

Растяжение пружины 9 вызывает силу FМ, которая через меньшее плечо рычага 1–в, создает на нем момент ММ(FМ).

Окончание преобразования -  МВХ(FВХ) = ММ(FМ)МКОР(поз.8).

Изменение начального натяжения пружины 9 осуществляется корректором 8.

Пневматические приборы имеют линейную шкалу и могут применяться для отображения 1, 2 или 3 параметров одновременно.

  1.  Прибора для записи электрического сигнала – напряжения постоянного тока и токовых сигналов

1 – неуравновешенный мост;

2 – реохорд (реостат с линейной характеристикой);

3 – усилитель;

4 – отсчетное устройство;

5 – реверсивный электродвигатель.

По такой схеме собирается, например, компенсатор потенциометрический (измерение нулевым методом).

Измерительная цепь состоит из двух преобразователей:

1. Цепь прямого преобразования – преобразование измеряемого напряжения U в поворот вала электродвигателя 5 (f(UД)) и перемещение механически связанной с ним стрелки 4 показывающего прибора мост 1, усилитель 3, э/двигатель 5, отсчетное устройство 4.

2 . Цепь обратной связи – компенсация U измеренного сигнала U напряжением меры UM, создаваемым за счет перемещения механически связанного с э/двигателем 5 движка реохорда 2.

Принцип работы

основан на уравновешивании (компенсации) измеряемого напряжения U.

Во входную цепь усилителя 3 последовательно с измеряемым напряжением включен неуравновешенный мост 1. Его выходное напряжение UM  действует встречно с измеряемым и поэтому к входу усилителя 3 прилагается их разность  U = UUM.

Эта разность усиливается UД и приводит в действие реверсивный э/двигаетль 5. Вал э/двигателя 5 перемещает движок реохорда 2 и стрелку отсчетного устройства 4. Это перемещение l является одновременно выходным сигналом следящей системы и входным сигналом преобразователя в цепи обратной связи, функцию которого неуравновешенный мост 1.

Для устранения помех (обеспечения постоянства рабочего тока) питание мостовой схемы осуществляется от  стабилизированного источника питания.

Т.к. 2 – реохорд, то статическая характеристика неуравновешенной мостовой схемы 1, как обратного преобразователя перемещения l в напряжение UM также линейная. Таким образом, шкала автоматического компенсатора оказывается равномерной.

Промышленностью выпускаются потенциометры, отличающиеся в основном конструктивным оформлением (габаритные размеры, вид и форма шкалы, способ регистрации и т.д.).

 

Компенсатор для измерения унифицированных токовых сигналов – автоматический миллиамперметр с нулевым методом измерения.

Принципиальная схема такого преобразователя полностью совпадает с аналогичной схемой автоматического потенциометра за исключением линии подвода токового сигнала.

Входной токовый сигнал  i преобразуется в напряжение U за счет прохождения через резистор, включенный во входную цепь прибора.

 Таким облразом, промышленный компенсатор для измерения токовых сигналов практически представляет собой автоматический потенциометр, снабженный входным резистором.

 

PAGE  89

U = 0 ..10 В

i = 0..5 мА

8

1

9

l1

Р

6

5

4

3

2

10

Y

P1

PПИТ

l

FМ

в

а

FВХ

EMBED PBrush  

5

4

R = 2 кОм

M

5

4

3

2

1

UM

UД

U

U

U

l

l1

5

7

3

2

1

i

UM

U

U

U

Rt

6

5

4

3

2

1

PВЫХ

P1

PПИТ

l

FМ

в

а

FВХ

EMBED PBrush  

УВЫХ

ХМ

ХИЗМ

Х

EMBED PBrush  


 

А также другие работы, которые могут Вас заинтересовать

75626. ИНСТРУМЕНТАРИЙ УПРАВЛЕНИЯ КАЧЕСТВОМ КАК ФАКТОР ИНВЕСТИЦИОННОЙ СТРАТЕГИИ БИЗНЕСА В УСЛОВИЯХ ГЛОБАЛЬНОЙ КОНКУРЕНЦИИ 585 KB
  Влияние системы менеджмента качества на выбор инвестиционной стратегии предприятия. Роль качества в условиях глобальной конкуренции в нефтегазовой Отрасли. Описание системы качества используемой Группой Газпром. Сравнительный анализ системы менеджмента качества используемой Группой компаний Газпром с системами менеджмента качества компаний конкурентов на мировом рынке...
75627. Информационная база научных публикаций в области менеджмента на основе онтологии (на примере факультета управления и психологии ФГБОУ ВПО «КубГУ») 3.2 MB
  В результате исследования была разработана информационная база научных публикаций на основе онтологии, были изучены особенности информационного обеспечения научных исследований, проведена оценка состояния этих исследований на факультете управления и психологии КубГУ.
75628. ИНФОРМАЦИОННАЯ РАБОТА ПО ФОРМИРОВАНИЮ ИМИДЖА ГЛАВЫ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ(НА ПРИМЕРЕ ФОРМИРОВАНИЯ ИМИДЖА ГЛАВЫ СТАРОМИНСКОГО РАЙОНА) 392 KB
  Проводником между населением и властными структурами в первую очередь служит имидж. Этот инструмент и есть средство воздействия на массовое сознание. От политических технологий, формирующих имидж, во многом зависит успех предстоящих планов.
75629. Информационно-документационное обеспечение принятия стратегических решений в организации (на примере ОАО «Родина») 904 KB
  Раскрытие сущности понятия «организация информационно-документационного обеспечения принятия стратегических решений» и выявление особенностей современного этапа развития систем ДОУ; характеристика нормативно-правовой базы информационно-документационного обеспечения управления; оценка эффективности действующей системы ДОУ в ОАО «Родина»...
75630. ИЗУЧЕНИЕ ВОЗДЕЙСТВИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ НА ВОДНЫЕ РАСТВОРЫ БЕЛКОВ И ДНК 4.02 MB
  В процессе выполнения работы были получены ДНК из цельной крови и белок из сыворотки крови. Было изучено влияние отклика электромагнитного поля на нуклеиновые и белковые структуры, а так же были изучены релаксационные частоты спектров. Намечены пути дальнейшего применения биологических структур для создания нанотехнологичных устройств
75631. Зимний туризм на Байкале 1.28 MB
  Про зимний отдых на Байкале можно говорить часами потому как сафари на снегоходах и путешествия на собачьих упряжках по льду Байкала катание на горных и равнинных лыжах подледная рыбалка и дайвинг это далеко не полный перечень всех вариантов зимнего отдыха на Байкале. На снегоходе можно побывать в самых труднодоступных уголках Байкала оказаться у берега там куда летом на катере опасно подходить заглянуть со льда в загадочный полумрак пещер. Большое количество маршрутов одно...
75632. Планирование учебно-тренировочного процесса по полиатлону в детско-юношеской спортивной школе 190.96 KB
  Провести опытно-экспериментальное исследование учебно-тренировочного процесса в детско-юношеской спортивной школе; ознакомиться с организацией и методами опытно-экспериментального исследования; провести анализ динамики физической подготовленности у спортсменов полиатлонистов; ознакомиться с результатами опытно-экспериментального исследования.
75633. РАЗРАБОТКА INTERNET-ПРИЛОЖЕНИЯ НА ПРИМЕРЕ СОЗДАНИЯ САЙТА ДЛЯ МБОУ СОШ №12 1.31 MB
  Разработать Интернет-приложение на примере сайта для МБОУ СОШ № 12, тем самым предоставить пользователям сети Интернет доступ к информационно-образовательному ресурсу, для самостоятельного изучения информации.
75634. Разработка мероприятий по проведению рекламной кампании ООО «Туристическое агентство «Экватор» 810.5 KB
  Выбор средств распространения рекламы. Особенности рекламы туристского предприятия. Одна из них активное развитие российского выездного туризма и следовательно формирование умения россиян вычитывать информацию из туристической рекламы. С помощью рекламы туристские организации осваивают новые рынки сбыта.