68405

Исполнительные механизмы и регулирующие органы

Лекция

Физика

Исполнительный механизм преобразует выходной сигнал регулятора в перемещение регулирующего органа. ИМ должен сохранять равенство между перемещением выходного элемента и рабочим ходом штока затвора регулирующего органа.

Русский

2014-09-22

561.5 KB

17 чел.

Лекция 16

Лекция № 16

исполнительные механизмы и регулирующие органы

Совокупность исполнительного механизма и регулирующего органа называется исполнительным устройством. Исполнительный механизм преобразует выходной сигнал регулятора в перемещение регулирующего органа. От правильного выбора и расчета исполнительного устройства зависит качество работы системы регулирования.

По виду используемой энергии исполнительные механизмы делятся.

Исполнительный механизм

Пневматические

Гидравлические

Электрические

Мембранные

Поршневые

Сильфонные

Мембранные

Поршневые

Лопастные

С гидромуфтой

Электродвигательные

Электромагнитные

Пружинные

Беспружинные

Прямоходные

(поступательное)

Однооборотные

(угол поворота 270-300)

Многооборотные

(угол поворота > 360)

Исполнительный механизм состоит из собственно исполнительного механизма и узла кинематической передачи. Усилие выходных элементов исполнительного механизма определяется из приведенного усилия, развиваемого самим механизмом с учетом передаточного числа и коэффициента полезного действия узла кинематической передачи.

В пневматических механизмах передаточное усилие создается за счет давления сжатого воздуха (до 1МПа).

В гидравлических механизмах передаточное усилие  создается за счет давления рабочей жидкости (2,5-20 МПа).

В пружинных механизмах перестановочное усилие в одном направлении создается давлением рабочей среды, а в обратном – упругим элементом (пружиной).

В безпружинных ИМ – перестановочное усилие создается перепадом давлений на рабочем органе.

Требования, предъявляемые к ИМ.

  1.  ИМ должен обеспечивать необходимую скорость регулирования.
  2.  ИМ должен иметь минимальное время трогания и минимальное время отключения.
  3.  ИМ должен быть достаточно чувствителен к командным сигналам.
  4.  ИМ должен иметь минимальный выбег выходного элемента.
  5.  ИМ должен иметь линейную ходовую характеристику, т.е. постоянство мощности во всем диапазоне изменения регулируемой величины.
  6.  ИМ должен сохранять равенство между перемещением выходного элемента и рабочим ходом штока затвора регулирующего органа.

Помимо этих преобразователей необходимо учитывать вид энергии регулятора и энергии создающей перестановочное усилие должны быть идентичны.

ИМ должен выбираться в соответствии с категоричностью помещения и иметь соответствующее исполнение. Необходимо учитывать габариты и массу ИМ.

Конструкция ИМ должна содержать дополнительные устройства:

  1.  Ручной привод.
  2.  Указатель положения выходного элемента.
  3.  Устройство подрегулирования начального  и конечного положения выходного элемента.

Пневматические   Исполнительные Механизмы

  1.  Мембранно-пружинный (МИМ)

Представляет собой преобразователь давления  сжатого воздуха в пропорциональное ему перемещение выходного штока. Величина перемещения зависит от конструкции: l = 6 – 100 мм.

1 – крышка корпуса;

2 – мембрана;

3 – опорный диск;

4 - пружина;

5 – корпус;

6 – опорная чашка;

           7 –чашка;

           8 – шток.

Мембрана резиново-тканевая, герметично заделанная между крышками.

В зависимости от той плоскости, в которую подается давление РВХ, ИМ может быть либо прямого, либо обратного действия. В механизме прямого действия при повышении давления в рабочей плоскости  место сочленения выходного штока с регулирующем органом отделяется от места заделки мембраны.

Статическая характеристика должна быть линейной: l*c = FЭФ * Р, где l -  перемещение штока; с – жесткость пружины; FЭФ – эффективная площадь (та часть площади, которая воспринимает командный сигнал).

Для уменьшения нелинейности из-за изменения эффективной площади (мембрана растягивается) устанавливается опорный диск, который ограничивает перемещение мембраны и изменяется профиль мембраны (б):

Для варианта б: FЭФ = /12 (D2 + Dd + d2), где D – диаметр мембраны =  (125 – 500)мм, d -  диаметр опорного диска.

Из-за непостоянства жесткости пружины (гистерезиса пружины) и из-за наличия усилий трения в сальнике регулирующего органа возникает гистерезис.

Согласно паспортным данным на клапан величина гистерезиса на должна превышать 2 % от полного хода штока.

Чтобы уменьшить погрешность (примерно до 1,5%) перемещения регулирующего орган используются позиционеры, при этом также увеличивается быстродействие.

  1.  Поршневой

Применяется, если требуется большой ход выходного элемента (до 500мм) и большое перестановочное усилие (до 5000 Н).

Гидравлические   Исполнительные Механизмы

  1.  Поршневой

Диаметр поршня от 80 до 150 мм. Ход штока до 200 мм. Перестановочное усилие от 5000 Н до 20000 Н. Могут быть прямоходными с кривошипным механизмом с углом поворота до 300. Мощность, подводимая к поршню зависит положения выходного вала.

Электрические   Исполнительные Механизмы

  1.  Электромагнитные

Могут использоваться соленоидного  типа или электромагнитные муфты.  

1 – обмотки; 2 – плунжер (сердечник).

Используется для малых диаметров и небольших перепадов давлений.

  1.  Электродвигательные

Электродвигатель может быть общего промышленного исполнения или специальные электродвигатели. Специальные имеют в своем составе помимо двигателя еще редуктор, ручной привод, конечные выключатели, указатели положения выходного вала.

Редуктор используется для фиксации в определенном положении вала двигателя при отключении последнего. Если угол поворота превышает технические возможности (~ 330), ИМ отключается конечными выключателями.

ИМ с постоянной скоростью вращения выходного вала используются с импульсными регуляторами.

ИМ с переменной скоростью вращения применяется для работы с аналоговыми регуляторами.

Регулирующие органы

Осуществляют регулирующее воздействие на объект посредством изменения расхода вещества или энергии подводимой к нему. Регулирующие органы могут быть:

  •  дросселирующими – переменное гидравлическое сопротивление, воздействующее на расход вещества за счет изменения своего проходного сечения;
  •  дозирующими – это механизмы и агрегаты, посредством которых осуществляется заданное дозирование, поступающего вещества или энергии за счет изменения производительности агрегата или механизмов.
  1.  Дроссельные 

Используются, если перекрываемые потоки не несут абразивных веществ

Односедельные

Двухседельные

1 – корпус;

2 – плунжер;

3 - седло

Обеспечивает наилучшую герметичность, но перепад давлений создает максимальное выталкивающее усилие при полностью закрытом клапане – неуравновешенность штока (используются разные усилия для перемещения)

При Dy < 25 мм.

Силы давления в потоке прикладываются к обоим плунжерам, при чем усилие направлено в разные стороны, но не обеспечивается полная герметичность.

При Dy > 25 мм.

 

  1.  Шланговые

Используются, если потоки содержат абразивные вещества. Изменяют проходное сечение при перемещении роликов

  1.  Диафрагмовые

Применяются для агрессивных сред, имеют более простую конструкцию.

Не используются при больших давлениях.

1 – корпус;

2 – диафрагма;

3 – перегородка.

Проходное сечение изменяется в случае перемещения центра диафрагмы отнсительно перегородки

  1.  Заслоночного типа

Для изменения расхода газовых сред в трубопроводах большого диаметра.

1 – диск;

2 – ось;

3 – корпус.

 Общие требования к регулирующим органам:

  1.  Принцип действия и конструкция регулирующего органа должны обеспечивать выполнением поставленной задачи автоматизации. Необходимо учесть какой должен быть регулирующий орган: нормально открытый или нормально закрытый, чтобы обеспечить безаварийность процесса при отказе системы автоматического регулирования.

НО – регулирующий орган, проходное сечение которого остается открытым при отсутствии командного сигнала.

НЗ –  регулирующий орган, проходное сечение которого остается закрытым при отсутствии командного сигнала.

  1.  Технические параметры регулирующего органа должны соответствовать свойствам и значениям параметров регулируемой среды, т.е. материал должен  быть стойким к агрессивным средам, должен выдерживать рабочее давление и температуру.
  2.  Регулирующий орган должен обеспечивать требуемую надежность работы и технический ресурс.
  3.  Регулирующий орган должен безотказно работать в производственной атмосфере, в предполагаемом месте установки.
  4.  Место размещения регулирующего органа должно отвечать условиям удобства монтажа и обслуживания.
  5.  Участок трубопровода, на котором устанавливается регулирующий орган и его байпасный узел должны иметь такое крепление, при котором регулирующий орган не испытывал бы механических перенапряжений, перекосов, изгибающих усилий.
  6.  Трубопровод должен иметь прямолинейный участок до и после места установки регулирующего органа.

Характеристики регулирующего органа:

  1.  Пропускная способность (условная) – номинальный расход в м3/ч жидкости, плотностью 1000 кг/м3 при нормальных условиях (20С), протекающей через полностью открытый регулирующий орган при перепаде давлений на нем 0,1 МПа.

KVY = DY2, где

DY – внутренний диаметр трубопровода, с помощью которого регулирующий орган присоединяется к трубопроводу.

Действительная пропускная способность может отличаться от условной на 10%. Пропускная характеристика выражает функциональную зависимость изменения пропускной способности от перемещения штока: KV = f()

1 – линейная характеристика применяется для регулирования: , где m -  коэффициент пропорциональности;

2 – равнопроцентная применяется для регулирования: , где - приращение пропускной способности, относительно приращения перемещения штока;

3 – двузпозиционная создается с помощью специального профиля затвора  с учетом дополнительных конструктивных особенностей и используется в системах блокировки;

4 – специальная создается с помощью специального профиля затвора и используется в системах регулирования, когда необходимо совместить все виды передаточных функций, чтобы получить переходную функцию стандартного регулятора.

  1.  Диаметр условного прохода. Наиболее распространенный диапазон: 25 – 350 мм.

  1.  Конструктивные характеристики. Выражают функциональную зависимость относительного изменения проходного сечения f регулирующего органа от степени его открытия l: f = (l), где , F – площадь проходного сечения в конкретный момент времени, - ход штока в конкретный момент времени, МАХ – максимальный условный ход.

  1.  Расходная характеристика. Выражает функциональную зависимость относительного изменения расхода от степени открытия регулирующего органа: , Q – текущий расход. Практически совпадает с пропускной характеристикой, но пропускная характеристика снимается при постоянном перепаде давлений (0,1МПа), а расходная может сниматься при других перепадах.

PAGE  98

/Y=max

KV/KVY

4

3

2

1

3

2

1

Q

3

2

1

Q

l

Q

l

3

2

1

Q

Q

редуктор

~U

М

2

1

~U

EMBED PBrush  

РВХ

РВХ

РВХ

EMBED PBrush  

l

Р

в)FЭФ = 0

б)FЭФ=1/3FM

а)FЭФ = FM

Р

Р

Р

EMBED PBrush  

1

EMBED PBrush  

8

7

5

6

4

3

2

1

l

РВХ


 

А также другие работы, которые могут Вас заинтересовать

44242. Изучение теоретических и практических основ учета и анализа оплаты труда, а так же разработка предложений по его совершенствованию в ООО «Росгосстрах» 556 KB
  Оплата труда заработная плата представляет собой один из основных факторов социально – экономической жизни страны коллектива человека. Учет труда и заработной платы по праву занимает одно из центральных мест во всей системе учета на предприятии. Он должен обеспечить оперативный контроль над количеством и качеством труда за использованием средств включаемых в фонд заработной платы и выплаты социального характера. При переходе к рыночной экономике произошли кардинальные изменения во многих сферах экономической деятельности в том числе и в...
44243. Изучение порядка и оценка правильности учета затрат и калькулирования себестоимости строительно-монтажных работ на предприятии «Пермавтодор» 459.5 KB
  Под себестоимостью строительных работ понимаются затраты строительной организации на их производство и сдачу заказчику. Целью учета себестоимости строительных работ является своевременное полное и достоверное отражение фактических затрат связанных с производством и сдачей этих работ заказчику по видам и объектам строительства выявление отклонений от применяемых норм и плановой себестоимости а также контроль за использованием материальных трудовых и финансовых ресурсов. Целью выполнения данной работы было изучение порядка и оценка...
44244. Анализ качества атмосферного воздуха в салоне автотранспортных средств (АТС) 650 KB
  Вызывает тревогу тот факт что несмотря на проводимую работу выбросы загрязняющих веществ в атмосферу от автотранспортных средств увеличиваются в год в среднем на 31. В масштабах страны доля транспорта в суммарных выбросах загрязняющих веществ в атмосферу от всех источников достигает 45 в выбросах парниковых газов примерно 10 в массе промышленных отходов 2 в сбросах вредных веществ со сточными водами около 3 в потреблении озоноразрушающих веществ не более 5 Чуйкова 1996. т вредных веществ что представляет серьезную...
44245. Разработка рекомендаций по использованию стратегии диверсификации в организации на примере «ООО Премьер» 439.5 KB
  Сущность и виды стратегии диверсификации Разработка рекомендаций по использованию стратегии диверсификации в организации на примере ООО Премьер Рекомендации по реализации стратегии диверсификации Динамичность развития и глобализация современной мировой экономики обусловили необходимость диверсификации как способа снижения рисков неопределенности внешней среды и повышения конкурентоспособности компаний.
44246. Анализ и оценка текущего финансового состояния предприятия, и разработка возможных рекомендаций по его улучшению и эффективности деятельности ФГУП «ПО Завод имени Серго» 8.75 MB
  Цель работы провести анализ и оценку текущего финансового состояния предприятия и разработать рекомендации по его улучшению и эффективности деятельности предприятия. Рассмотрены теоретические и методологические основы финансового анализа его роль и значение в эффективности деятельности предприятия. Произведен полный анализ финансового состояния предприятия за 20092010 года предложены пути совершенствования финансовой и хозяйственной деятельности предприятия....
44247. Основные принципы и закономерности микромира 649 KB
  Квантовая (волновая) механика пытается объяснить как корпускулярные, так и волновые свойства веществ. Гипотеза об универсальности корпускулярно-волнового дуализма была предложена Луи де Бройлем в 1923 г. Он утверждал, что не только фотоны, но и электроны, и любые другие частицы материи наряду с корпускулярными обладают волновыми свойствами
44248. Изучение основных характеристик микрофлюидного чипа, определяющих его аналитические свойства 3.92 MB
  Смачиваемость поверхности.42 Изменение смачиваемости в зависимости от шероховатости поверхности. Измерения контактных углов после физической обработки поверхности. Измерения контактных углов после химической обработки поверхности.
44249. ППР на возведение офисного здания банка в г. Новосибирске 4.05 MB
  Дополнительным офисом Помещение специалистов Комната отдыха Зал обслуживания юридических лиц Серверная Гардероб Вент камера Помещение VIP клиентов Наружные стены выполнены толщиной 510 мм из керамического кирпича размерами В качестве утеплителя предусмотрены пенополистирольные плиты Урса толщиной. ЗАКЛЮЧЕНИЕ Дипломный проект состоит из пяти графических листов и пояснительной записки.