68405

Исполнительные механизмы и регулирующие органы

Лекция

Физика

Исполнительный механизм преобразует выходной сигнал регулятора в перемещение регулирующего органа. ИМ должен сохранять равенство между перемещением выходного элемента и рабочим ходом штока затвора регулирующего органа.

Русский

2014-09-22

561.5 KB

18 чел.

Лекция 16

Лекция № 16

исполнительные механизмы и регулирующие органы

Совокупность исполнительного механизма и регулирующего органа называется исполнительным устройством. Исполнительный механизм преобразует выходной сигнал регулятора в перемещение регулирующего органа. От правильного выбора и расчета исполнительного устройства зависит качество работы системы регулирования.

По виду используемой энергии исполнительные механизмы делятся.

Исполнительный механизм

Пневматические

Гидравлические

Электрические

Мембранные

Поршневые

Сильфонные

Мембранные

Поршневые

Лопастные

С гидромуфтой

Электродвигательные

Электромагнитные

Пружинные

Беспружинные

Прямоходные

(поступательное)

Однооборотные

(угол поворота 270-300)

Многооборотные

(угол поворота > 360)

Исполнительный механизм состоит из собственно исполнительного механизма и узла кинематической передачи. Усилие выходных элементов исполнительного механизма определяется из приведенного усилия, развиваемого самим механизмом с учетом передаточного числа и коэффициента полезного действия узла кинематической передачи.

В пневматических механизмах передаточное усилие создается за счет давления сжатого воздуха (до 1МПа).

В гидравлических механизмах передаточное усилие  создается за счет давления рабочей жидкости (2,5-20 МПа).

В пружинных механизмах перестановочное усилие в одном направлении создается давлением рабочей среды, а в обратном – упругим элементом (пружиной).

В безпружинных ИМ – перестановочное усилие создается перепадом давлений на рабочем органе.

Требования, предъявляемые к ИМ.

  1.  ИМ должен обеспечивать необходимую скорость регулирования.
  2.  ИМ должен иметь минимальное время трогания и минимальное время отключения.
  3.  ИМ должен быть достаточно чувствителен к командным сигналам.
  4.  ИМ должен иметь минимальный выбег выходного элемента.
  5.  ИМ должен иметь линейную ходовую характеристику, т.е. постоянство мощности во всем диапазоне изменения регулируемой величины.
  6.  ИМ должен сохранять равенство между перемещением выходного элемента и рабочим ходом штока затвора регулирующего органа.

Помимо этих преобразователей необходимо учитывать вид энергии регулятора и энергии создающей перестановочное усилие должны быть идентичны.

ИМ должен выбираться в соответствии с категоричностью помещения и иметь соответствующее исполнение. Необходимо учитывать габариты и массу ИМ.

Конструкция ИМ должна содержать дополнительные устройства:

  1.  Ручной привод.
  2.  Указатель положения выходного элемента.
  3.  Устройство подрегулирования начального  и конечного положения выходного элемента.

Пневматические   Исполнительные Механизмы

  1.  Мембранно-пружинный (МИМ)

Представляет собой преобразователь давления  сжатого воздуха в пропорциональное ему перемещение выходного штока. Величина перемещения зависит от конструкции: l = 6 – 100 мм.

1 – крышка корпуса;

2 – мембрана;

3 – опорный диск;

4 - пружина;

5 – корпус;

6 – опорная чашка;

           7 –чашка;

           8 – шток.

Мембрана резиново-тканевая, герметично заделанная между крышками.

В зависимости от той плоскости, в которую подается давление РВХ, ИМ может быть либо прямого, либо обратного действия. В механизме прямого действия при повышении давления в рабочей плоскости  место сочленения выходного штока с регулирующем органом отделяется от места заделки мембраны.

Статическая характеристика должна быть линейной: l*c = FЭФ * Р, где l -  перемещение штока; с – жесткость пружины; FЭФ – эффективная площадь (та часть площади, которая воспринимает командный сигнал).

Для уменьшения нелинейности из-за изменения эффективной площади (мембрана растягивается) устанавливается опорный диск, который ограничивает перемещение мембраны и изменяется профиль мембраны (б):

Для варианта б: FЭФ = /12 (D2 + Dd + d2), где D – диаметр мембраны =  (125 – 500)мм, d -  диаметр опорного диска.

Из-за непостоянства жесткости пружины (гистерезиса пружины) и из-за наличия усилий трения в сальнике регулирующего органа возникает гистерезис.

Согласно паспортным данным на клапан величина гистерезиса на должна превышать 2 % от полного хода штока.

Чтобы уменьшить погрешность (примерно до 1,5%) перемещения регулирующего орган используются позиционеры, при этом также увеличивается быстродействие.

  1.  Поршневой

Применяется, если требуется большой ход выходного элемента (до 500мм) и большое перестановочное усилие (до 5000 Н).

Гидравлические   Исполнительные Механизмы

  1.  Поршневой

Диаметр поршня от 80 до 150 мм. Ход штока до 200 мм. Перестановочное усилие от 5000 Н до 20000 Н. Могут быть прямоходными с кривошипным механизмом с углом поворота до 300. Мощность, подводимая к поршню зависит положения выходного вала.

Электрические   Исполнительные Механизмы

  1.  Электромагнитные

Могут использоваться соленоидного  типа или электромагнитные муфты.  

1 – обмотки; 2 – плунжер (сердечник).

Используется для малых диаметров и небольших перепадов давлений.

  1.  Электродвигательные

Электродвигатель может быть общего промышленного исполнения или специальные электродвигатели. Специальные имеют в своем составе помимо двигателя еще редуктор, ручной привод, конечные выключатели, указатели положения выходного вала.

Редуктор используется для фиксации в определенном положении вала двигателя при отключении последнего. Если угол поворота превышает технические возможности (~ 330), ИМ отключается конечными выключателями.

ИМ с постоянной скоростью вращения выходного вала используются с импульсными регуляторами.

ИМ с переменной скоростью вращения применяется для работы с аналоговыми регуляторами.

Регулирующие органы

Осуществляют регулирующее воздействие на объект посредством изменения расхода вещества или энергии подводимой к нему. Регулирующие органы могут быть:

  •  дросселирующими – переменное гидравлическое сопротивление, воздействующее на расход вещества за счет изменения своего проходного сечения;
  •  дозирующими – это механизмы и агрегаты, посредством которых осуществляется заданное дозирование, поступающего вещества или энергии за счет изменения производительности агрегата или механизмов.
  1.  Дроссельные 

Используются, если перекрываемые потоки не несут абразивных веществ

Односедельные

Двухседельные

1 – корпус;

2 – плунжер;

3 - седло

Обеспечивает наилучшую герметичность, но перепад давлений создает максимальное выталкивающее усилие при полностью закрытом клапане – неуравновешенность штока (используются разные усилия для перемещения)

При Dy < 25 мм.

Силы давления в потоке прикладываются к обоим плунжерам, при чем усилие направлено в разные стороны, но не обеспечивается полная герметичность.

При Dy > 25 мм.

 

  1.  Шланговые

Используются, если потоки содержат абразивные вещества. Изменяют проходное сечение при перемещении роликов

  1.  Диафрагмовые

Применяются для агрессивных сред, имеют более простую конструкцию.

Не используются при больших давлениях.

1 – корпус;

2 – диафрагма;

3 – перегородка.

Проходное сечение изменяется в случае перемещения центра диафрагмы отнсительно перегородки

  1.  Заслоночного типа

Для изменения расхода газовых сред в трубопроводах большого диаметра.

1 – диск;

2 – ось;

3 – корпус.

 Общие требования к регулирующим органам:

  1.  Принцип действия и конструкция регулирующего органа должны обеспечивать выполнением поставленной задачи автоматизации. Необходимо учесть какой должен быть регулирующий орган: нормально открытый или нормально закрытый, чтобы обеспечить безаварийность процесса при отказе системы автоматического регулирования.

НО – регулирующий орган, проходное сечение которого остается открытым при отсутствии командного сигнала.

НЗ –  регулирующий орган, проходное сечение которого остается закрытым при отсутствии командного сигнала.

  1.  Технические параметры регулирующего органа должны соответствовать свойствам и значениям параметров регулируемой среды, т.е. материал должен  быть стойким к агрессивным средам, должен выдерживать рабочее давление и температуру.
  2.  Регулирующий орган должен обеспечивать требуемую надежность работы и технический ресурс.
  3.  Регулирующий орган должен безотказно работать в производственной атмосфере, в предполагаемом месте установки.
  4.  Место размещения регулирующего органа должно отвечать условиям удобства монтажа и обслуживания.
  5.  Участок трубопровода, на котором устанавливается регулирующий орган и его байпасный узел должны иметь такое крепление, при котором регулирующий орган не испытывал бы механических перенапряжений, перекосов, изгибающих усилий.
  6.  Трубопровод должен иметь прямолинейный участок до и после места установки регулирующего органа.

Характеристики регулирующего органа:

  1.  Пропускная способность (условная) – номинальный расход в м3/ч жидкости, плотностью 1000 кг/м3 при нормальных условиях (20С), протекающей через полностью открытый регулирующий орган при перепаде давлений на нем 0,1 МПа.

KVY = DY2, где

DY – внутренний диаметр трубопровода, с помощью которого регулирующий орган присоединяется к трубопроводу.

Действительная пропускная способность может отличаться от условной на 10%. Пропускная характеристика выражает функциональную зависимость изменения пропускной способности от перемещения штока: KV = f()

1 – линейная характеристика применяется для регулирования: , где m -  коэффициент пропорциональности;

2 – равнопроцентная применяется для регулирования: , где - приращение пропускной способности, относительно приращения перемещения штока;

3 – двузпозиционная создается с помощью специального профиля затвора  с учетом дополнительных конструктивных особенностей и используется в системах блокировки;

4 – специальная создается с помощью специального профиля затвора и используется в системах регулирования, когда необходимо совместить все виды передаточных функций, чтобы получить переходную функцию стандартного регулятора.

  1.  Диаметр условного прохода. Наиболее распространенный диапазон: 25 – 350 мм.

  1.  Конструктивные характеристики. Выражают функциональную зависимость относительного изменения проходного сечения f регулирующего органа от степени его открытия l: f = (l), где , F – площадь проходного сечения в конкретный момент времени, - ход штока в конкретный момент времени, МАХ – максимальный условный ход.

  1.  Расходная характеристика. Выражает функциональную зависимость относительного изменения расхода от степени открытия регулирующего органа: , Q – текущий расход. Практически совпадает с пропускной характеристикой, но пропускная характеристика снимается при постоянном перепаде давлений (0,1МПа), а расходная может сниматься при других перепадах.

PAGE  98

/Y=max

KV/KVY

4

3

2

1

3

2

1

Q

3

2

1

Q

l

Q

l

3

2

1

Q

Q

редуктор

~U

М

2

1

~U

EMBED PBrush  

РВХ

РВХ

РВХ

EMBED PBrush  

l

Р

в)FЭФ = 0

б)FЭФ=1/3FM

а)FЭФ = FM

Р

Р

Р

EMBED PBrush  

1

EMBED PBrush  

8

7

5

6

4

3

2

1

l

РВХ


 

А также другие работы, которые могут Вас заинтересовать

37836. РЕШЕНИЕ СИСТЕМ НЕЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ МЕТОДОМ НЬЮТОНА 247 KB
  Метод Ньютона Многие прикладные задачи радиофизики и электроники требуют решения систем нелинейных алгебраических уравнений СНАУ или в векторной форме 2. Для численного решения таких систем используются итерационные методы. Построение k1го приближения в этой схеме осуществляется посредством решения линейной системы 2.3 при этом вектор поправки находится путем решения системы линейных алгебраических уравнений 2.
37837. Педагогические способности учителя 132 KB
  Способности - индивидуально-психологические особенности человека, проявляющиеся в деятельности и являющиеся условием успешности ее выполнения. От способностей зависит скорость, глубина, легкость и прочность процесса овладения знаниями, умениями и навыками, но сами они к ним не сводятся.
37840. Решение систем обыкновенных дифференциальных уравнений 300 KB
  В классе неявных методов абсолютно устойчивыми являются неявный одношаговый метод Эйлера неявный одношаговый метод трапеций неявный двухшаговый метод Гира и его реализация с переменным шагом – метод Шихмана. В данной лабораторной работе изучаются следующие три наиболее часто используемые на практике численные метода: явный метод Эйлера неявный метод Эйлера неявный метод Шихмана. Явный метод Эйлера Формула интегрирования явного метода Эйлера имеет вид: 3.
37841. РАСПРЕДЕЛЕНИЕ ТЕРМОЭЛЕКТРОНОВ ПО СКОРОСТЯМ КОНТАКТНАЯ РАЗНОСТЬ ПОТЕНЦИАЛОВ 186.94 KB
  РТ21 ЛАБОРАТОРНАЯ РАБОТА № 3 РАСПРЕДЕЛЕНИЕ ТЕРМОЭЛЕКТРОНОВ ПО СКОРОСТЯМ КОНТАКТНАЯ РАЗНОСТЬ ПОТЕНЦИАЛОВ ЦЕЛЬ РАБОТЫ: Определить величину и знак контактной разности потенциалов между катодом и анодом при указанных ниже токах накала. Измерить зависимость анодного тока от напряжения изменяя его от 03 до 03 B при напряжениях накала 63; 50; 40 B. Ток накала измеряется амперметром А1. По полученным данным построить график зависимости lnI от U и определить по ним величину и знак контактной разности потенциалов между катодом и...