68420

Классификация и свойства экосистем

Лекция

Экология и защита окружающей среды

Компоненты и процессы обеспечивающие функционирование экосистемы рассмотрим на рисунке где схематически представлено взаимодействие трёх компонентов а именно: сообщества потока энергии круговорота веществ Поток энергии направлен в одну сторону часть поступающей солнечной энергии преобразуется...

Русский

2014-09-22

66.5 KB

5 чел.

                                                                  Лекция 3.

                                     Классификация и свойства экосистем.

  1.  Функциональные свойства и структура экосистемы.
  2.  Примеры экосистем.

 

 Живые организмы и их неживое (абиотическое) окружение неразделимо связаны друг с другом и находятся в постоянном взаимодействии.

Экосистема - основная функциональная единица в экологии, поскольку в неё входят и организмы и неживая среда - компоненты, взаимно влияющие на свойства друг друга  и необходимые для поддержания жизни в той её форме, которая существует на Земле.  

 Компоненты и процессы, обеспечивающие функционирование экосистемы, рассмотрим на рисунке, где схематически представлено взаимодействие трёх компонентов, а именно :

  1.  сообщества
  2.  потока энергии
  3.  круговорота веществ

Поток энергии направлен в одну сторону, часть поступающей солнечной энергии преобразуется сообществом и переходит на качественно более новую ступень, трансформируясь в органическое вещество, представляющее собой более концентрированную форму энергии, чем солнечный свет, но большая часть энергии деградирует, проходит через систему покидает её в виде низкокачественной тепловой энергии (тепловой сток). Энергия может накапливаться, затем снова высвобождаться или экспортироваться, но её нельзя использовать вторично. В отличие от энергии, элементы питания, в том числе биогенные элементы, необходимые для жизни (углерод, азот, фосфор и т.д.), и вода  могут использоваться многократно. Эффективность повторного использования и размеры импорта и экспорта элементов питания сильно варьируют в зависимости от типа экосистемы.

                                                                                                                                    

                                                                                                                                       

 источник энергии                          хранилище энергии

 

             Автотрофы (зелёные растения способные переводить солнечную энергию в  органические вещества).

             Гетеротрофы (организмы, нуждающиеся в готовой пище).

 

На функциональной схеме сообщество изображено в виде пищевой сети, образованной автотрофами и гетеротрофами, связанными  между собой соответствующими потоками энергии, круговоротами биогенных элементов.

 Все экосистемы даже самая крупная - биосфера, являются открытыми системами, они должны получать и отдавать энергию. Поэтому концепция экосистемы должна учитывать существование связанных между собой и необходимых для функционирования и  самоподдержания экосистемы, факторов среды на выходе и среды на входе.
Масштабы изменения среды на входе и выходе сильно варьируют и зависят от размеров системы (чем она больше, тем меньше зависит от внешних частей); от интенсивности обмена (чем он интенсивнее, тем больше приток и отток); сбалансированности автотрофных и гетеротрофных процессов (чем сильнее нарушено это равновесие, тем больше должен быть приток извне для его восстановления); стадии и степени развития системы.

С точки зрения трофической структуры (от греч. trophe - питание) экосистему можно разделить на два  яруса:

  1.  верхний автотрофный (самостоятельно питающийся) ярус или «зеленый пояс»,включающий растения или их части, содержащие хлорофилл, где преобладают фиксация энергии света ,использование простых неорганических соединений и накопление сложных органических соединений.
  2.  нижний гетеротрофный (питаемый другими) ярус, или «коричневый пояс», в котором преобладает использование, трансформация и разложение сложных соединений.

 С биологической точки зрения в составе экосистемы удобно выделять следующие компоненты:

  1.  неорганические вещества (C, N, CO2, H2O и др.) включающееся в круговороты.
  2.  органические соединения (белки, углеводы, липиды, гумусовые вещества), связывающие биотическую и абиотическую части.
  3.  воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы.
  4.  продуцентов, автотрофных организмов, в основном зеленые растения, которые могут производить пищу из простых неорганических веществ.
  5.  макроконсументов или фаготрофов (от греч. phagos - пожиратель) - гетеротрофных организмов, основном животных, питающихся другими организмами или частицами органического вещества.
  6.  микроконсументов, сапротрофов, деструктрофов - гетеротрофных организмов, в основном бактерий и грибов, получающих энергию либо путем разложения мертвых тканей, либо путем поглощения растворенного органического вещества, выделяющегося самопроизвольно или извлеченного сапротрофами из растений и других организмов.

Рассмотрим примеры экосистем:

Пруд и луг.

Абиотические вещества: неорганические и органические соединения и отдельные элементы O2, S, P, N, CO2, аминокислоты, гуминовые кислоты и большая часть жизненно важных элементов питания находятся в растворе и непосредственно доступно организмам, но значительное их количество держится в запасе в виде нерастворенных частиц вещества, а также в самих организмах.

Скорость высвобождения элементов питания в раствор, поступление солнечной энергии, а также температурный цикл, долгота дня, и другие климатические условия - таковы самые важные переменные, ежедневно регулирующие интенсивность функционирования всей экосистемы.

Продуценты.

Продуцентов пруда можно подразделить на два главных типа :

  1.  укоренённые или крупно плавающие растения (макрофиты), обычно встречающиеся только на мелководье.
  2.  мелкие плавающие растения, как правило, водоросли, называемые фитопланктоном, которые распространены в толще воды на глубину проникновения света. При изобилии фитопланктона вода становится зеленоватой, в других случаях продуценты незаметны. Играют большую роль, чем укоренённые.

Среди продуцентов луга преобладают укоренённые растения, но на почве, камнях и стеблях высших растений встречаются мелкий фотосинтезирующие организмы, такие как водоросли, мхи, лишайники.

Макроконсументы.

Первичные макроконсументы или растительноядные животные питаются непосредственно живыми растениями или их частями.

В пруду имеются два типа первичных макроконсументов :

  •  зоопланктон (животный планктон)
  •  бентос (донные формы), соответствующие двум типам продуцентов.

В экосистеме луга растительноядные животные также делятся на две группы :

Мелкие - растительноядные насекомые и другие беспозвоночные.

Крупные - травоядные грызуны и копытные млекопитающие.

Вторичные консументы, или плотоядные, такие как хищные насекомые и хищные рыбы в пруду и хищные насекомые, пауки, птицы, млекопитающие на лугу, питаются первичными консументами или другими вторичными консументами (становясь тем самым третичными консументами).

Сапротрофные организмы - представлены на лугу и в пруду бактериями, жгутиковыми и грибами.

Как видим, структура и функции водных и наземных экосистем в принципе сходны, однако видовой состав и размеры трофических компонентов этих экосистем различны. Наиболее резкое различие между экосистемами - в размерах зелёных растений. Наземные автотрофы обычно не так многочисленны, но они значительно крупнее водных. Наземные автотрофы используют значительную часть своей энергии на построение опорной ткани, которая необходима в связи с тем, что плотность (а значит и поддерживающая способность) воздуха значительно меньше, чем воды.

Примеры основных экосистем :

классификация по биомам, основанная на типе растительности и основных стабильных физических чертах ландшафта.

 Наземные биомы.

Биом - крупная региональная или субконтинентальная биосистема, характеризующаяся каким-либо основным типом растительности. Наземные экосистемы выделяют на биомы, а типы водных экосистем по геологическим и физическим особенностям.

Тундра : арктическая и альпийская ;

Хвойные леса ;

Листопадный лес умеренной зоны ;

Степь умеренной зоны ;

Саванна ;

Чапараль - район с дождливой зимой и засушливым летом ;

Пустыня ;

Полувечнозелёный тропический лес : выражены влажный и сухой сезоны ;

Вечнозелёный тропический дождевой лес ;

Пресноводные экосистемы.

Лентические (стоячие воды) : озёра, пруды ;

Лотические (текучие воды) : реки, ручьи ;

Заболоченные угодья : болота, болотистые леса ;

Морские экосистемы.

Открытый океан (пелагическая) ;

Воды континентального шельфа (прибрежные) ;

Районы апвеллинга  (плодородные районы с продуктивным рыболовством) ;

Эстуарии (прибрежные бухты, проливы, устья рек, солёные марши) ;

  1.  среды (ветер, мороз).  

             


 

А также другие работы, которые могут Вас заинтересовать

40792. Расчет трехфазных цепей. Режимы работы 73.91 KB
  Трехфазные цепи являются разновидностью цепей синусоидального тока и следовательно все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным.
40793. Взаимная индуктивность. Идеальный трансформатор 76.91 KB
  Идеальный трансформатор Электрические цепи могут содержать элементы индуктивно связанные друг с другом. Такие элементы могут связывать цепи электрически гальванически разделенные друг от друга. В том случае когда изменение тока в одном из элементов цепи приводит к появлению ЭДС в другом элементе цепи говорят что эти два элемента индуктивно связаны а возникающую ЭДС называют ЭДС взаимной индукции. Степень индуктивной связи элементов характеризуется коэффициентом связи 1 где М взаимная индуктивность элементов цепи размерность ...
40794. Методы определения коэффициента облученности 1.08 MB
  Методы определения коэффициента облученности При расчете потоков результирующего излучения необходимо располагать данными о коэффициентах облученности. Используя свойства замыкаемости потоков излучения 1471 можно записать . Вычитая из 14122 почленно 1411914121 найдем соотношение для определения взаимных поверхностей излучения 14123 14124 14125 Анализируя 1412314125 сформулируем такое правило: В замкнутой системе состоящей из трех невогнутых тел средняя взаимная...
40795. Явление резонанса. Частотные характеристики 65.71 KB
  Частотные характеристики Резонансом называется такой режим работы цепи включающей в себя индуктивные и емкостные элементы при котором ее входное сопротивление входная проводимость вещественно. Следствием этого является совпадение по фазе тока на входе цепи с входным напряжением. Резонанс в цепи с последовательно соединенными элементамирезонанс напряжений Для цепи на рис. В цепи преобладает индуктивность т.
40796. Характеристическое сопротивление и коэффициент распространения симметричного четырехполюсника 96.65 KB
  Для записи уравнений четырехполюсника выделим в произвольной схеме ветвь с единственным источником энергии и любую другую ветвь с некоторым сопротивлением см. Учитывая что в соответствии с принципом взаимности видно что коэффициенты четырехполюсника связаны между собой соотношением Уравнения 3 и 4 представляют собой основные уравнения четырехполюсника;...
40797. Электрические фильтры 65.69 KB
  Качество фильтра считается тем выше чем ярче выражены его фильтрующие свойства т. Классификация фильтров Название фильтра Диапазон пропускаемых частот Низкочастотный фильтр фильтр нижних частот Высокочастотный фильтр фильтр верхних частот Полосовой фильтр полоснопропускающий фильтр Режекторный фильтр полоснозадерживающий фильтр и где В соответствии с материалом изложенным в предыдущей лекции если фильтр имеет нагрузку сопротивление которой при всех частотах равно характеристическому то напряжения и соответственно токи на...
40798. Линейные электрические цепи при несинусоидальных периодических токах 64.74 KB
  Линейные электрические цепи при несинусоидальных периодических токах. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или и наличием в цепи хотя бы одного нелинейного элемента. Кроме того в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами. Характеристики несинусоидальных величин Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты приведены на примере...
40799. Переходные процессы в линейных электрических цепях с сосредоточенными параметрами 66.4 KB
  Для цепей с заданными постоянными или периодическими напряжениями токами источников принужденная составляющая определяется путем расчета стационарного режима работы схемы после коммутации любым из рассмотренных ранее методов расчета линейных электрических цепей. общее решение уравнения 2 имеет вид 4 Соотношение 4 показывает что при классическом методе расчета послекоммутационный процесс рассматривается как наложение друг на друга двух режимов принужденного наступающего как бы сразу после коммутации и свободного имеющего...
40800. Способы составления характеристического уравнения 81.02 KB
  Характеристическое уравнение составляется для цепи после коммутации. путем исключения из системы уравнений описывающих электромагнитное состояние цепи на основании первого и второго законов Кирхгофа всех неизвестных величин кроме одной относительно которой и записывается уравнение 2; путем использования выражения для входного сопротивления цепи на синусоидальном токе; на основе выражения главного определителя. Согласно первому способу в предыдущей лекции было получено дифференциальное уравнение относительно напряжения на...