68464

Основные положения стереохимии. Реакционная способность гетерофункциональных соединений

Лекция

Химия и фармакология

Стереохимия изучает пространственное строение органических соединений. Органические молекулы с одинаковой молярной массой, он отличающиеся природой или последовательностью связей между атомами и пространственным расположением атомов называются изомерами.

Русский

2014-09-22

97 KB

0 чел.

Лекция № 6.

Основные положения стереохимии.

Реакционная способность гетерофункциональных соединений.

Стереохимия изучает пространственное строение органических соединений. Органические молекулы с одинаковой молярной массой, он отличающиеся природой или последовательностью связей между атомами и пространственным расположением атомов называются изомерами.

       Изомерия

структурная      стереоизомерия

     оптическая   геометрическая

Стереоизомеры – это изомеры, которые различаются только положением атомов или групп атомов в пространстве.

Оптическая изомерия.

Большинство органических молекул имеют асимметричное строение. Это связано с тем, что в этих соединениях имеется атом углерода, у которого все четыре заместителя различные. Такой атом углерода обозначается С* и называется асимметричным или хиральным. (Хиральный – от греческого слова – хирос – рука). Молекула с С* и ее зеркальное изображение не совпадают (как левая рука и правая при наложении). Например: молочная кислота.

        з                                           энантиомеры

          СООН                е                     СООН

                   р                     

          С*                      к                      С*

   Н          ОН             а            НО           Н

          СН3                    л                      СН3

      D-ряд (–)               о                    L-ряд (+)

Эти молекулы молочной кислоты при наложении не совпадают, т.к. они относятся друг к другу как предмет и несовместимое его зеркальное изображение. Такие стереоизомеры называют энантиомерами. Энантиомеры обладают способностью вращать плоскость поляризованного луча, т.е. обладают оптической активностью, поэтому их называют оптическими изомерами, а изомерию – оптической. Они вращают плоскость поляризованного луча на одинаковый угол, но один изомер вращает вправо (+), другой влево (–), поэтому их называют оптическими антиподами. Угол вращения определяют с помощью прибора поляриметра. Для определения конфигурации, т.е. расположения заместителей у хирального атома, пользуются строением глицеринового альдегида (стандарт).

     О                                   О

С                                  С

     Н                               Н

С*                                С*

      Н       ОН                 ОН     Н

СН2ОН                         СН2ОН

D-ряд (–)                       L-ряд (+)

Исключение: молочная кислота, фруктоза, адреналин.

Смесь равных количеств антиподов называется рацемической смесью (рацематом).

r = (+) + (–) (оптически неактивны)

Геометрическая изомерия.

Этот вид изомерии характерен для соединений с двойной связью. ( = )

Например, непредельная дикарбоновая кислота – бутендиовая – может существовать в виде двух изомеров:

                      Н    Н                                 Н    СООН

  цис-                                                                         транс-

  изомер        С = С                                 С = С                  изомер

                                                                 

             НООС     СООН               НООС     Н

         малеиновая кислота           фумаровая кислота

Это стереоизомеры, но они имеют плоскость симметрии, значит они не могут быть энантиомерами. Цис–транс–изомеры являются диастереомерами. Они не являются оптическими антиподами и отличаются по физико-химическим свойствам.

Фумаровая кислота содержится в организме человека и принимает участие в обмене веществ. Малеиновая кислота токсична, в природе не существует, получают ее синтетически.

Связь пространственного строения соединений с биологической активностью.

Энантиомеры обладают одинаковыми физическими и химическими свойствами (in vitro). Для биохимических процессов (in vivo) характерна стереоспецифичность, т.е. связь строения с биологической активностью.

Активность лекарственных веществ, биорегуляторов зависит от связи с рецептарами клетки, чем полнее эта связь, тем активнее действует вещество. Например, адреналин – гормон надпочечников, участвует в регуляции сердечной деятельности, обмене углеводов.

                Н          СН3                                         Н          СН3

                       N                                                          N

                                                                                  

                       СН2                                                      СН2 

                                                                                  

                Н – С* – ОН                                     НО – С* – Н

D(–) – адреналин                                                             L(+) – адреналин

D(–) – левовращающий адреналин действует в 15 раз сильнее, чем L(+).

Реакционная способность гетерофункциональных соединений.

Имеют две функциональные группы.

Гидроксикислоты:

    к.ц.

   

Представители:

СН2–СООН

ОН

СН3–С*Н–СООН

         

        ОН

       СООН

       

НО–С*–Н

       

       СН3

      L(+)

       СООН

       

  Н–С–ОН

       

       СН3   

      D(–)

r = (+) + (–)

Гликолевая кислота. Содержится в свекле, винограде.

Молочная кислота, имеет С*, существует в виде 2-х стереоизомеров – энантиомеров.

Мясомолочная кислота, выделена из мышц. Это конечный продукт превращения глюкозы в анэробных условиях (без О2). Резко возрастает содержание мясомолочной кислоты в мышцах при работе.

Получается при сбраживании сахаров.

Рацемат – кислота брожения, образуется в кислой капусте, при молочном брожении.

Химические свойства гидрокислот.

Соли молочной кислоты – лактаты.

  1.  Свойства группы СООН– карбоксильной.

А) диссоциация: СН3–СН–СООН          СН3–СН–СОО  +  Н+ 

Б) образование соли: СН3–СН–СООН  +  NaОН       СН3–СН–СООNa  +  Н2О

В) образование амидов: СН3–СН–СООН  +  NH3        СН3–СН–С            +  Н2О

Г) образование эфиров: СН3–СН–СО ОН  +  H ОС2Н5       СН3–СН–С                  + Н2О

  1.  Свойства группы ОН– гидроксильной.

                                                        [O]                     

А) окисление: СН3–СН–С                       СН3–С–С             + H2O

                     h                                                                   H2SO4  

Б) образование эфиров: СН3–СН–С            +  НОС2Н5         СН3–СН–С           +  Н2О

В) СН3–СН–С            +  НООС–СН3        СН3–СН–С

Многоосновные гидроксикислоты.

Полигетерофункциональные соединения (имеют более 2-х функциональных групп).

Представители:

I. Яблочная кислота

 СООН   СООН  энантиомеры

       Содержится в рябине, яблоках.

      Н–С*–ОН         НО–С*–Н  

                                      

           СН2                      СН2

                                      

           СООН                  СООН

  D(+)                       L(–)

II. Лимонная кислота – соли цитраты

                     OH      

                     

НООС–СН2–С–СН2–СООН

         

         COOH

Содержится в цитрусовых, винограде. Ее соли используют для приготовления плазмы крови (консервант).

III. Винная кислота – соли тартраты.

Имеет два хиральных атома С.

                 СООН                     СООН                        СООН

                             D(+)                       L(–)                        D(+)      

            Н–С*–ОН            НО–С*–Н                     Н–С*ОН

                             D(+)                       L(–)                        L(–)

         НО–С*–Н                  Н–С*–ОН                  Н–С*–ОН                    r = (+) + (–)    

                                                                                                            виноградная   

                 СООН                     СООН                        СООН                       кислота

 D(+)–винная кислота     L(–)–винная кислота  мезовинная кислота

Оксокислоты (кетонокислоты).

Представители:

  1.  СН3–С–СООН – пировиноградная кислота (ПВК) – соли пируваты.

Получается при окислении молочной кислоты, легко декарбоксилируется.

                                 фермент                               КоАSH

СН3–С–СООН                 СН3–С                       СН3–С

                                     –СО2                              окисляется   

  1.  СН3–С–СН2–СООН – ацетоуксусная кислота.

Образуется в организме (in vivo) в результате метаболизма высших жирных кислот. Входит в состав «ацетоновых тел», которые образуются у больных «диабетом». При диабете идет усиленный распад жиров.

                   гидролиз        I        [O]

    жиры                высшие жирные кислоты (ВЖК)              СН3–СН–СН2–СООН

II  СН3–С–СН2–СООН               СН3–С–СН3      III

                                                    –СО2                      ацетон

ацетоновые тела

Выводятся из организма с мочой.

  1.   НООС–С–СН2–СООН – щавелевоуксусная кислота (ЩУК).

В организме образуется при окислении яблочной кислоты.

         СООН                               СООН                                СООН

                          НАД+                                                      

    Н–С*–ОН    фермент           С=О    СН3–С                    СН2     

                                                                                          

         СН2                                   СН2         ацетил         НО–С–СООН   +   КоА–SH

                                                            КоASH                

         СООН                               СООН                                СН2   

    яблочная                               ЩУК                                   

     кислота                                                                             СООН

        лимонная

          кислота

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

60612. Методичні рекомендації щодо ефективності проблемного навчання 29 KB
  Ушинського що привчати учнів виконувати розумову працю необхідно поступово починаючи з молодших класів; будувати навчальний процес так щоб вивчення нового матеріалу спиралося на знання попереднього...