6857

Визначення коефіцієнтів тертя ковзання

Лабораторная работа

Физика

Визначення коефіцієнтів тертя ковзання Мета роботи Метою є експериментальне визначення коефіцієнтів тертя ковзання у тертєвих парах з різних конструкційних матеріалів. Використовується метод В.О. Желіговського (нахиленої лінійки), що дає можли...

Украинкский

2013-01-08

87 KB

31 чел.

Визначення коефіцієнтів тертя ковзання

  1.  Мета роботи

Метою є експериментальне визначення коефіцієнтів тертя ковзання у тертєвих парах з різних конструкційних матеріалів. Використовується метод В.О. Желіговського (нахиленої лінійки), що дає можливість визначати коефіцієнти тертя при сухому терті двох твердих поверхонь, при ковзанні з відносно малою швидкістю.

  1.  Загальні теоретичні відомості

2.1. Основні поняття та терміни. Зовнішнє тертя твердих тіл – складне явище, що залежить від багатьох процесів, які відбуваються на межі розділу у зонах фактичного контакту та у тонких поверхневих шарах тіл при їх відносному тангенційному зміщенні. Сила зовнішнього тертя ковзання – опір відносному переміщенню твердих тіл, що спрямований проти цього переміщення. В залежності від стану поверхонь твердих тіл розрізняють тертя без змащування, граничне та рідинне.

Тертя без змащуванння (сухе) – тертя двох твердих тіл, якщо на їх повернях нема будь-якого змащувального матеріалу.

Граничне тертя – тертя двох твердих тіл при наявності на поверхнях шару рідини, яка має властивості, що відрізняються від обємних.

Рідинне тертя – тертя, що виникає при тангенційному зміщенні поверхонь, між якими існує відносно товстий шар рідини з обємними властивостями.

2.2. Взаємодія твердих тіл.  Молекулярно-механічна  (адгезійно-деформаційна) теорія тер-тя пояснює процес тертя як силову взаємодію мікровиступів шорстких поверхонь у зонах фактичного контакту. Ці останні займають лише незначну частину номінальної поверхні контак-тування й на них мікровиступи поверхонь деформуються та вкорінюються одни у одни. Опір цьому деформуванню визначає деформаційну (механічну) складову сили тертя. Її можна обчис-лити, якщо відомі механічні характеристики поверхневих шарів, геометричні розміри та форма мікронерівностей, напружений стан матеріалів у зоні контакту.  Молекулярна складова визна-чається взаємодією молекулярних структур поверхонь (притяганням та відштовхуванням). Цю складову можна розрахувати на основі напівемпіричних співвідношень, що були одержані у експериментальних дослідженнях.

Таким чином, дотичні напруження  n , що виникають на межі контакту поверхонь:

   n =  о +  pc ,                                                                          ( 1 )

де   о   та    – фрикційні константи, що визначаються умовами роботи пари тертя,  pc –  питомий тиск на контактних поверхнях.

2.3. Фактори, що визначають силу тертя при ковзанні.

     Сили тертя залежать від таких груп факторів:

            властивостей поверхневих шарів контактуючих деталей;

    – режиму тертя;

    – форми поверхонь кінематичної пари.

Перша група факторів, що визначають фізико-механічний та мікрогеометричний стан контактуючих поверхонь: молекулярна будова, структура поверхневого шару, внутрішні напруження у ньому, твердість, пружність та інші механічні властивості; мікрорельєф, притаманий кожній технічній поверхні, та ін.

Взаємодія поверхонь при терті суттєво залежить від характеру деформування мікровис-тупів: воно може бути пружним чи пружно-пластичним  (частіше всього) або ж пластичним.

          Друга група факторів  режим тертя: питомий тиск, відносні швидкості, температура у контактних зонах, присутність або відсутність на поверхнях тертя оксидів або змащуючих материалів,  властивості цих третіх речовин.

 

  1.  Сили при  терті ковзання.

Схема сил, що діють при переміщенні твердого тіла 1 відносно твердої поверхні 2, наведена на мал. 1.

      

  

     

Мал. 1. Сили при  терті

             ковзання                       

У тертєвій парі може виникнути самогальмування, коли рух під дією зовнішньої сили P стає неможливим, якою великою б вона не була, тобто при  цьому  P < Fт ;  умову самогаль-мування  можливо  записати  у  вигляді: g  < j т .

  1.  Вплив форми контактуючих поверхонь.

Це врахування впливу третьої групи факторів: вводять зведений коефіцієнт тертя співвідношення зовнішніх сил рушійної  P та  стискаючої контактуючі поверхні  N:  f¢ = P/N. При наявності тертя силу P знаходять через  f¢ :

                                                     P = Fт = f¢ N ,                                                           ( 3 )

де  Fт  зведена сила тертя у кінематичній парі.

2.6.  Параметри мікрорельєфу технічних поверхонь

   Мікрорельєф, згідно зі стандартами, описують десятьма параметрами, серед яких, крім параметрів, що характеризують висоту та крок мікронерівностей, повинні бути їх форма та напрямок "у плані".

     

                      Мал. 2.  Мікроелементи профілю

    

Висота Rmax  технічних поверхонь звичайно лежить у межах від 0.025 до 1600 мкм – це відстань між лініями виступів та западин. Крім того, висоту нерівностей виміряють параметрами:  Rz – висотою за десятьма точками ,  що є  сумою середніх арифметичних абсолютних відхилень п¢яти найбільших мінімумів Himin та п¢яти найбільших максимумів Himax  від середньої лінії  m,  яка провадиться так, щоб у межах базової лінії середнє квадратичне відхилення точок профілю до неї було мінімальне :

                                       

та  Raсереднім арифметичним абсолютних значень відхилень y(x) профілю:

                                    

 

Середній крок мікронерівностей  Sm  - середнє арифметичне значення кроку нерівностей у межах базової довжини.

Відносна опорна довжина профілю tp – це сума довжин відрізків bi , що знаходяться на визначеному рівні у матеріалі виступів на лінії, еквідистантній середній лінії; а відносна опорна довжина

                                                                 

 

        Мал. 3. Опорні криві для різних                

           способів обробки поверхонь:                     

     1 – точення; 2 – шлифування; 3 – полірування

що безпосередньо приймає участь у контактуванні поверхонь; її наближено можна описати  рівнянням   tp = aen . Значення коефіцієнтів  а та n  для стальних поверхонь такі:

вид обробки

а

n

точення

1.8

1.8

шліфування

2.3

1.6

полірування

2.5

1.6

    За допомогою параметрів опорної кривої розраховують зусилля, що виникають при контактуванні поверхонь, коефіцієнти тертя, параметри процесів зношування, герметичність стиків.

  1.  Розрахунок коефіцієнтів тертя при ковзанні

Для найбільш типових методів обробки поверхонь (середні значення коефіцієнтів опорної кривої  а = 2, n = 2)  коефіцієнт тертя при пружному контакті може бути розрахований за формулою

                        

де   = (1 2 )/E  пружна константа матеріалу; E  модуль пружності,   коефіцієнт Пуасона;  (для двох контактуючих поверхонь = 1 + 2; = Rmax/ra1/ , r  радіус мікронерівностей ; еф коефіцієнт гістерезисних втрат (для сталі  еф =0,1).

Значення величин у формулі (7) для інших матеріалів та умов контактування наведені у довідниках.

  1.  Орієнтовні значення коефіцієнтів тертя ковзання

Значення коефіцієнтів тертя ковзання, одержані у експериментах з різнимі матеріалами при малих швидкостях прослизання наведені нижче, але потрібно памятати про вплив вищезга-даних груп факторів – ці значення відповідають визначеним умовам експерименту.  Якщо останні будуть іншимі, зміняться й значення коефіцієнту  f , тобто до подібних даних потрібно завжди відноситися критично .

 

Орієнтовні значення коефіцієнтів тертя  ковзання

матеріали тертевих пар

коефіцієнт тертя   f

без змащування

із змащуванням

сталь по сталі

0,1 0,2

0,05 0,1

закалена сталь по закаленій сталі

0,12 0,25

0,06 0,12

сталь по бронзі

0,15 0,2

0,07 0,1

бронза по бронзі

0,15 0,2

0,07 0,1

сталь по алюмінієвому сплаву

0,16 0,3

0,08 0,2

сталь по текстоліту

0,2 0,3

0,12 0,18

  1.  Метод В.А. Желіговського

Коефіцієнт тертя знаходять із співвідношення  f  = tan j т , а кут тертя  j т визначається таким чином.

         

                               Мал. 4. Схема визначення коефіцієнту тертя

На горизонтальній площині столу (мал. 4) знаходиться лінійка 1 з матеріалу одного з матеріалів тертєвої пари; одним кінцем вона закріплена на голівці  2  креслярського приладу.  Кут нахилу лінійки  може змінюватися за допомогою поворотного пристрою голівки. До передньої площини лінійки кареткою 4  притискається зразок  3  з другого матеріалу пари тертя.

При переміщенні лінійки праворуч вздовж нижнього краю столу каретка, яку тягне лінійка, також почне переміщуватися. Якщо кут нахилу лінійки   менш куту тертя  j т  між ліній-кою та зразком, каретка разом зі зразком та лінійка будуть рухатися у напрямку  X    X  як одне ціле, не прослизаючи одна відносно другої.  Якщо   j т  , зразок буде прослизати по лінійці, а траєкторією руху каретки буде пряма лінія   V   V , що нахилена до нормалі  N    N  на кут j т .

  1.  Проведення експерименту

Для визначення коефіцієнту тертя необхідно на аркуші паперу, закріпленому на поверхні столу, прокреслити пряму  N    N  - нормаль до ребра лінійки. Пересуваючи лінійку з кареткою, одержати траєкторію  V   V  руху останньої за допомогою олівця, що встановлений у отвору каретки.  Від точки  O  перетину цих ліній відкласти довільний відрізок  OK , провести перпенди-

куляр  KM до нормалі  N    N  (напрямок ковзання зразка по лінійці) та визначити коефіцієнт тертя  f = tan j т  = KM /OK .

Для кожного зразку матеріалу визначення провести тричі та усереднити результати. Проаналізувати та пояснити одержані дані.

Оформити протокол проведення роботи .

  1.  Контрольні запитання

  1.  Який вплив сил тертя на працездатність механізмів ?
    1.  Які фактори впливають на сили тертя ?
    2.  Як впливають властивості досліджувальних матеріалів на коефіцієнти тертя ?
    3.  Які основні параметри мікрогеометрії технічних поверхонь ?
    4.  Яким чином шорсткість паперу, по якому переміщується каретка, впливає на результати визначення коефіцієнтів тертя методом  В.А. Желіговського ?

  1.  Література

  1.  Крагельский И.В., Добычин М.И., Комбалов В.С.  Основы расчетов на трение и износ. М.: Машиностроение, 1977.
    1.  Трение, изнашивание и смазка: Справочник. В 2-х кн./ Под ред. И.В. Крагельского, В.В. Алисина. М.: Машиностроение, 1978.
    2.  Юденич В.В. Лабораторные работы по теории механизмов и машин. М.: Высшая школа, 1962. 


 

А также другие работы, которые могут Вас заинтересовать

8117. Понятие экспертной системы. Основные особенности, архитектура и классификация ЭС. Этапы разработки и стадии жизненного цикла ЭС 69 KB
  Понятие экспертной системы. Основные особенности, архитектура и классификация ЭС. Этапы разработки и стадии жизненного цикла ЭС. (Конспект) Понятие экспертной системы. Экспертная система (ЭС) - компьютерная система, использующая знания эксперта...
8118. Логический вывод в системе CLIPS. Стратегии разрешения конфликтов 146 KB
  Логический вывод в системеCLIPS. Стратегии разрешения конфликтов. (Конспект) Базовый цикл работы МЛВ в системеCLIPS: 1. Работа МЛВ останавливается, если достигнут предел активации правил или нет текущего фокуса. В противном случае, для в...
8119. Модели представления знаний. Синтаксис и семантика логики предикатов первого порядка 72.5 KB
  Модели представления знаний. Синтаксис и семантика логики предикатов первого порядка (Конспект) Модели представления знаний Знания, хранящиеся в базе знаний (БЗ) интеллектуальных систем должны быть представлены с использованием некоторой модели пред...
8120. Логическое следование. Логический вывод. Метод резолюций в логике предикатов первого порядка 73.5 KB
  Логическое следование. Логический вывод. Метод резолюций в логике предикатов первого порядка. Логика первого порядка, являясь формализованным аналогом обычной логики, дает возможность строго рассуждать об истинности и ложности утверждений и об их вз...
8121. Продукционные системы. Управление выводом в продукционных системах 66.5 KB
  Продукционные системы. Управление выводом в продукционных системах. (Конспект) Основные определения В самом общем виде продукционная система задается с помощью совокупности правил следующего вида: Если S1, то R1, Если Sn, то Rm, где...
8122. Фреймы, как модель представления знаний. Управление выводом во фреймовых системах 92 KB
  Фреймы, как модель представления знаний. Управление выводом во фреймовых системах. (Конспект) Фрейм (от англ. Frame - рамка, несущая конструкция) - структура для описания стереотипной ситуации, содержащая множество характеристик ситуации...
8123. Семантические сети. Вывод на семантических сетях 89.5 KB
  Семантические сети. Вывод на семантических сетях. (Конспект) Формально, семантическая сеть (СС) представляет собой помеченный ориентированный граф. Вершины СС соответствуют сущностям предметной области - объектам, событиям, свойствам, процессам...
8124. Поиск в пространстве состояний. Формальная постановка задачи. Обобщенный алгоритм поиска. Критерии оценки стратегий 116.01 KB
  Поиск в пространстве состояний.Формальная постановка задачи. Обобщенный алгоритм поиска. Критерии оценки стратегий. Многие задачи,в частности игры и головоломки,могут быть представлены как задачи поиска в пространств...
8125. Методы неинформированного поиска. Поиск в ширину, в глубину, однородной стоимости, ограниченный по глубине поиск 142.53 KB
  Методы не информированного поиска. Поиск в ширину,в глубину, однородной стоимости, ограниченный по глубине поиск. Основная проблема в области поиска - нахождение хорошей стратегии поиска для заданной задачи. Страт...