6857

Визначення коефіцієнтів тертя ковзання

Лабораторная работа

Физика

Визначення коефіцієнтів тертя ковзання Мета роботи Метою є експериментальне визначення коефіцієнтів тертя ковзання у тертєвих парах з різних конструкційних матеріалів. Використовується метод В.О. Желіговського (нахиленої лінійки), що дає можли...

Украинкский

2013-01-08

87 KB

36 чел.

Визначення коефіцієнтів тертя ковзання

  1.  Мета роботи

Метою є експериментальне визначення коефіцієнтів тертя ковзання у тертєвих парах з різних конструкційних матеріалів. Використовується метод В.О. Желіговського (нахиленої лінійки), що дає можливість визначати коефіцієнти тертя при сухому терті двох твердих поверхонь, при ковзанні з відносно малою швидкістю.

  1.  Загальні теоретичні відомості

2.1. Основні поняття та терміни. Зовнішнє тертя твердих тіл – складне явище, що залежить від багатьох процесів, які відбуваються на межі розділу у зонах фактичного контакту та у тонких поверхневих шарах тіл при їх відносному тангенційному зміщенні. Сила зовнішнього тертя ковзання – опір відносному переміщенню твердих тіл, що спрямований проти цього переміщення. В залежності від стану поверхонь твердих тіл розрізняють тертя без змащування, граничне та рідинне.

Тертя без змащуванння (сухе) – тертя двох твердих тіл, якщо на їх повернях нема будь-якого змащувального матеріалу.

Граничне тертя – тертя двох твердих тіл при наявності на поверхнях шару рідини, яка має властивості, що відрізняються від обємних.

Рідинне тертя – тертя, що виникає при тангенційному зміщенні поверхонь, між якими існує відносно товстий шар рідини з обємними властивостями.

2.2. Взаємодія твердих тіл.  Молекулярно-механічна  (адгезійно-деформаційна) теорія тер-тя пояснює процес тертя як силову взаємодію мікровиступів шорстких поверхонь у зонах фактичного контакту. Ці останні займають лише незначну частину номінальної поверхні контак-тування й на них мікровиступи поверхонь деформуються та вкорінюються одни у одни. Опір цьому деформуванню визначає деформаційну (механічну) складову сили тертя. Її можна обчис-лити, якщо відомі механічні характеристики поверхневих шарів, геометричні розміри та форма мікронерівностей, напружений стан матеріалів у зоні контакту.  Молекулярна складова визна-чається взаємодією молекулярних структур поверхонь (притяганням та відштовхуванням). Цю складову можна розрахувати на основі напівемпіричних співвідношень, що були одержані у експериментальних дослідженнях.

Таким чином, дотичні напруження  n , що виникають на межі контакту поверхонь:

   n =  о +  pc ,                                                                          ( 1 )

де   о   та    – фрикційні константи, що визначаються умовами роботи пари тертя,  pc –  питомий тиск на контактних поверхнях.

2.3. Фактори, що визначають силу тертя при ковзанні.

     Сили тертя залежать від таких груп факторів:

            властивостей поверхневих шарів контактуючих деталей;

    – режиму тертя;

    – форми поверхонь кінематичної пари.

Перша група факторів, що визначають фізико-механічний та мікрогеометричний стан контактуючих поверхонь: молекулярна будова, структура поверхневого шару, внутрішні напруження у ньому, твердість, пружність та інші механічні властивості; мікрорельєф, притаманий кожній технічній поверхні, та ін.

Взаємодія поверхонь при терті суттєво залежить від характеру деформування мікровис-тупів: воно може бути пружним чи пружно-пластичним  (частіше всього) або ж пластичним.

          Друга група факторів  режим тертя: питомий тиск, відносні швидкості, температура у контактних зонах, присутність або відсутність на поверхнях тертя оксидів або змащуючих материалів,  властивості цих третіх речовин.

 

  1.  Сили при  терті ковзання.

Схема сил, що діють при переміщенні твердого тіла 1 відносно твердої поверхні 2, наведена на мал. 1.

      

  

     

Мал. 1. Сили при  терті

             ковзання                       

У тертєвій парі може виникнути самогальмування, коли рух під дією зовнішньої сили P стає неможливим, якою великою б вона не була, тобто при  цьому  P < Fт ;  умову самогаль-мування  можливо  записати  у  вигляді: g  < j т .

  1.  Вплив форми контактуючих поверхонь.

Це врахування впливу третьої групи факторів: вводять зведений коефіцієнт тертя співвідношення зовнішніх сил рушійної  P та  стискаючої контактуючі поверхні  N:  f¢ = P/N. При наявності тертя силу P знаходять через  f¢ :

                                                     P = Fт = f¢ N ,                                                           ( 3 )

де  Fт  зведена сила тертя у кінематичній парі.

2.6.  Параметри мікрорельєфу технічних поверхонь

   Мікрорельєф, згідно зі стандартами, описують десятьма параметрами, серед яких, крім параметрів, що характеризують висоту та крок мікронерівностей, повинні бути їх форма та напрямок "у плані".

     

                      Мал. 2.  Мікроелементи профілю

    

Висота Rmax  технічних поверхонь звичайно лежить у межах від 0.025 до 1600 мкм – це відстань між лініями виступів та западин. Крім того, висоту нерівностей виміряють параметрами:  Rz – висотою за десятьма точками ,  що є  сумою середніх арифметичних абсолютних відхилень п¢яти найбільших мінімумів Himin та п¢яти найбільших максимумів Himax  від середньої лінії  m,  яка провадиться так, щоб у межах базової лінії середнє квадратичне відхилення точок профілю до неї було мінімальне :

                                       

та  Raсереднім арифметичним абсолютних значень відхилень y(x) профілю:

                                    

 

Середній крок мікронерівностей  Sm  - середнє арифметичне значення кроку нерівностей у межах базової довжини.

Відносна опорна довжина профілю tp – це сума довжин відрізків bi , що знаходяться на визначеному рівні у матеріалі виступів на лінії, еквідистантній середній лінії; а відносна опорна довжина

                                                                 

 

        Мал. 3. Опорні криві для різних                

           способів обробки поверхонь:                     

     1 – точення; 2 – шлифування; 3 – полірування

що безпосередньо приймає участь у контактуванні поверхонь; її наближено можна описати  рівнянням   tp = aen . Значення коефіцієнтів  а та n  для стальних поверхонь такі:

вид обробки

а

n

точення

1.8

1.8

шліфування

2.3

1.6

полірування

2.5

1.6

    За допомогою параметрів опорної кривої розраховують зусилля, що виникають при контактуванні поверхонь, коефіцієнти тертя, параметри процесів зношування, герметичність стиків.

  1.  Розрахунок коефіцієнтів тертя при ковзанні

Для найбільш типових методів обробки поверхонь (середні значення коефіцієнтів опорної кривої  а = 2, n = 2)  коефіцієнт тертя при пружному контакті може бути розрахований за формулою

                        

де   = (1 2 )/E  пружна константа матеріалу; E  модуль пружності,   коефіцієнт Пуасона;  (для двох контактуючих поверхонь = 1 + 2; = Rmax/ra1/ , r  радіус мікронерівностей ; еф коефіцієнт гістерезисних втрат (для сталі  еф =0,1).

Значення величин у формулі (7) для інших матеріалів та умов контактування наведені у довідниках.

  1.  Орієнтовні значення коефіцієнтів тертя ковзання

Значення коефіцієнтів тертя ковзання, одержані у експериментах з різнимі матеріалами при малих швидкостях прослизання наведені нижче, але потрібно памятати про вплив вищезга-даних груп факторів – ці значення відповідають визначеним умовам експерименту.  Якщо останні будуть іншимі, зміняться й значення коефіцієнту  f , тобто до подібних даних потрібно завжди відноситися критично .

 

Орієнтовні значення коефіцієнтів тертя  ковзання

матеріали тертевих пар

коефіцієнт тертя   f

без змащування

із змащуванням

сталь по сталі

0,1 0,2

0,05 0,1

закалена сталь по закаленій сталі

0,12 0,25

0,06 0,12

сталь по бронзі

0,15 0,2

0,07 0,1

бронза по бронзі

0,15 0,2

0,07 0,1

сталь по алюмінієвому сплаву

0,16 0,3

0,08 0,2

сталь по текстоліту

0,2 0,3

0,12 0,18

  1.  Метод В.А. Желіговського

Коефіцієнт тертя знаходять із співвідношення  f  = tan j т , а кут тертя  j т визначається таким чином.

         

                               Мал. 4. Схема визначення коефіцієнту тертя

На горизонтальній площині столу (мал. 4) знаходиться лінійка 1 з матеріалу одного з матеріалів тертєвої пари; одним кінцем вона закріплена на голівці  2  креслярського приладу.  Кут нахилу лінійки  може змінюватися за допомогою поворотного пристрою голівки. До передньої площини лінійки кареткою 4  притискається зразок  3  з другого матеріалу пари тертя.

При переміщенні лінійки праворуч вздовж нижнього краю столу каретка, яку тягне лінійка, також почне переміщуватися. Якщо кут нахилу лінійки   менш куту тертя  j т  між ліній-кою та зразком, каретка разом зі зразком та лінійка будуть рухатися у напрямку  X    X  як одне ціле, не прослизаючи одна відносно другої.  Якщо   j т  , зразок буде прослизати по лінійці, а траєкторією руху каретки буде пряма лінія   V   V , що нахилена до нормалі  N    N  на кут j т .

  1.  Проведення експерименту

Для визначення коефіцієнту тертя необхідно на аркуші паперу, закріпленому на поверхні столу, прокреслити пряму  N    N  - нормаль до ребра лінійки. Пересуваючи лінійку з кареткою, одержати траєкторію  V   V  руху останньої за допомогою олівця, що встановлений у отвору каретки.  Від точки  O  перетину цих ліній відкласти довільний відрізок  OK , провести перпенди-

куляр  KM до нормалі  N    N  (напрямок ковзання зразка по лінійці) та визначити коефіцієнт тертя  f = tan j т  = KM /OK .

Для кожного зразку матеріалу визначення провести тричі та усереднити результати. Проаналізувати та пояснити одержані дані.

Оформити протокол проведення роботи .

  1.  Контрольні запитання

  1.  Який вплив сил тертя на працездатність механізмів ?
    1.  Які фактори впливають на сили тертя ?
    2.  Як впливають властивості досліджувальних матеріалів на коефіцієнти тертя ?
    3.  Які основні параметри мікрогеометрії технічних поверхонь ?
    4.  Яким чином шорсткість паперу, по якому переміщується каретка, впливає на результати визначення коефіцієнтів тертя методом  В.А. Желіговського ?

  1.  Література

  1.  Крагельский И.В., Добычин М.И., Комбалов В.С.  Основы расчетов на трение и износ. М.: Машиностроение, 1977.
    1.  Трение, изнашивание и смазка: Справочник. В 2-х кн./ Под ред. И.В. Крагельского, В.В. Алисина. М.: Машиностроение, 1978.
    2.  Юденич В.В. Лабораторные работы по теории механизмов и машин. М.: Высшая школа, 1962. 


 

А также другие работы, которые могут Вас заинтересовать

50069. Свободные (затухающие) колебания в последовательном RLC-контуре 116 KB
  Цель работы: наблюдение затухающих колебаний на экране осциллографа и экспериментальное определение характеристик колебаний и параметров контура. Краткие теоретические сведения: Уравнение свободных колебаний в последовательном RLC контуре рис.1 может быть получено из второго правила Кирхгофа: Uc UR = es где Окончательно уравнение принимает вид 1 где Решением уравнения 1 при малом затухании b2 wо2 является функция описываемая уравнением...
50070. Изучение сложения колебаний 145 KB
  Изучение сложения колебаний Цель: экспериментально исследовать явления происходящие при сложении колебаний. Сложение сонаправленных колебаний Рассмотрим два гармонических колебания совершаемые в одном направлении. Как видно из рисунка амплитуда результирующего колебания может быть легко найдена по теореме косинусов 1 а начальная фаза определяется соотношением 2 Картина колебаний является неизменной если их амплитуда не изменяется со временем. Из 1 видно что это возможно только в случае если частоты складываемых...
50071. Изготовление модели значка выпускника ИИС 78.5 KB
  В дальнейшем раскрывая это окно можно будет контролировать такие свойства создаваемых объектов как абрис заливка и пр. Вызовите свиток Outline Абрис с панели инструментов или через меню View Вид установите в нем толщину линии 0508 мм. Проконтролируйте единицу измерения толщины линии вызвав в свитке Outline Абрис окно Edit Изменить. Примените к малому ромбу абрис Deep Yellow толщиной 0254 мм и заливку цветом Bby blue.
50072. Определение момента инерции махового колеса методом колебаний 163 KB
  Момент инерции тела I относительно некоторой оси является мерой инертности тела при вращении его вокруг этой оси. Для материальной точки момент инерции равен произведению ее массы на квадрат расстояния до оси вращения...
50073. Измерение диэлектрической проницаемости твердых материалов 663 KB
  Цель работы: Определение электрической ёмкости конденсатора. Выявление взаимосвязи электрической постоянной и напряжения электрической постоянной и расстояния между обкладками конденсатора. Основные законы явления и физические величины изучаемые в работе: Уравнение Гаусса условие потенциальности поля электрическая постоянная ёмкость плоского конденсатора реальные заряды нескомпенсированные заряды электрическое смещение диэлектрическая поляризация диэлектрическая проницаемость. Если на обкладки конденсатора подано...
50074. Визначення роботи виходу електронів з металу за допомогою явища термоелектронної емісії 74 KB
  Мета роботи: дослідження явища термоелектронної емісії та визначення роботи виходу електронів з вольфраму. Розвязавши цю систему рівнянь визначимо роботу виходу А = 4. визначити роботу виходу електрона з металу вольфраму.
50075. ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ САХАРНОГО РАСТВОРА САХАРИМЕТРОМ 126.5 KB
  К оптически активным веществам относятся некоторые кристаллы и растворы например кварц и раствор сахара в дистиллированной воде. Целью лабораторной работы является определение величины удельного вращения ρ для раствора сахара для чего используется эталонный раствор а также определение концентрации сахара в некотором исследуемом растворе. Описание установки Концентрация раствора сахара определяется прибором который называется сахариметром. Его основными частями являются поляризатор и анализатор между которыми помещается трубка с...
50076. ИЗУЧЕНИЕ УСТРОЙСТВА И РАСЧЕТ ПЕРВИЧНЫХ СРЕДСТВ ПОЖАРОТУШЕНИЯ 376 KB
  В качестве первичных средств пожаротушения применяют воду песок асбестовое или войлочное полотно огнетушители. Огнетушители надежное средство при тушении загораний до прибытия пожарных подразделений. Воздушно-пенные огнетушители В качестве веществ для получения воздушно-механической пены широко используют различные пенообразователи поверхностно-активные вещества и смачиватели.
50077. ДИСПЕРСИЯ ПРИЗМЫ 304 KB
  Дисперсией света называются явления обусловленные зависимостью показателя преломления от частоты или длины волны излучения: 1 Один из важнейших выводов электромагнитной теории света Максвелла состоит в том что показатель преломления электромагнитных волн равен в системе СГСэ: 2 Здесь ε и μ диэлектрическая и магнитная проницаемости среды постоянные которые в первоначальной теории полагались не зависящими от частоты падающего света. Для того чтобы получить соотношение связывающее показатель преломления с длиной волны необходимо...