68836

Скінчені автомати, що приймають регулярні вирази

Лекция

Информатика, кибернетика и программирование

Побудова М7. Для побудови цього автомату використовується ідея приєднання виходу М1 до входу М2. Беремо Q7 = Q1  Q2, вважаючи, що Q1  Q2 =  , тобто усі стани автомату М1 відрізняються від станів автомату М2 незалежно від позначень. Множина заключних станів означається як...

Украинкский

2014-09-26

155 KB

1 чел.

Лекція 6

Скінчені автомати, що приймають регулярні вирази

Будемо казати, що скінчений автомат приймає  регулярний  вираз,  якщо автомат представляє мову, описану цим виразом.

    

                a 

 

                    a   

 

            a   

    

                 a    

                

Автомати, що приймають простіші регулярні вирази  , {}, {a | a   }, де   - вхідний  алфавіт,  зображені  на  рис.6.1,  а,  б,  в   відповідно.

                                                                           

                         а)                                        б)                                          в)                                

Рис.6.1. Автомати, що приймають простіші регулярні вирази.

             а) L(M) = ; б) L(M) = { };  в) L(M) = { a }.

Зауважимо, що другий автомат детермінований, а перший і третій - ні.

Лема 6.1. За поданими автоматами

М1  = (Q1, , 1, q, F1),  M2  = (Q2, , 2, p, F2)

можна побудувати автомати  М3 , ... , М8  такі, що

                                               L(M3) =  * \ L(M1),

                                               L(M4) = L(M1)       L(M2),

                                               L(M5) = L(M2) \ L(M1),

                                               L(M6) = L(M1)       L(M2),

                                               L(M7) = L(M1)L(M2),

                                               L(M8) = L*(M1).

Доведення  проведемо  конструктивним  шляхом,  тобто  побудуємо автомати  М3, ... , М8.

Побудова  М3. Автомат  М3  можна одержати з  М1  заміною  множини F1  заключних станів на множину   Q1 \ F1 . Отже,

M3  = (Q1, , 1, q, Q1 \ F1).

Побудова  М4. Візьмемо   Q4 = Q1 x Q2. Нехай   r  =  (q, p)  Q4.  

Означимо  4

                                                         4:  ((qi, pj), s) (1(qi, s), 2(pj, s))

та множину  F4

F4 = {(qi, pj)  |  qi  F1 &  pj  F2)}.

Тоді

M4 = (Q4, , 4, r, F4). 

 Побудова М5  прямує з побудови  М3  та  М4, оскільки

L(M4) \ L(M1) = L(M2) ( * \ L(M1)) = L(M2)  L(M3).

 Побудова М6  виконується подібно до  М4. Беремо  Q6 = Q4, 6  = 4,   а  

               F6 = {(qi, pj)  |  qi  F1  або  pj  F2)}. 

Тоді

  М6 = (Q6, , 6, r, F6).

 Побудова М7. Для побудови цього автомату використовується ідея  приєднання виходу  М1  до входу  М2. Беремо  Q7 = Q1  Q2,   вважаючи,   що Q1  Q2 = , тобто усі стани автомату  М1  відрізняються від станів  автомату  М2  незалежно від позначень. Множина заключних станів означається як

F7  = F2,

а функція переходів  7  означається таким чином

1)  7 :  ( qi, s ) qj,  якщо  1 :  ( qi, s )  qj  або  2 : ( qi, s ) qj;

2)  7 :  ( qi, s ) p,    якщо 1:  ( qi, s) qj,   &  qj  F1.

Тоді

М7 = (Q7, , 7, q, F7). 

Побудова  М8 . Цей автомат  будується  аналогічно  попередньому.

Спочатку для того,  щоб  М8  приймав  пустий  рядок =  L0 (M1),  уводиться початковий стан  u  Q1. Потім  Q8  та  F8  означаються як

Q8  = Q1  { u },  F8  =  F1  { u },

а  8  подібно до 7   означається таким чином

1) 8 :  ( qi, s )   qj,  якщо  1 :  ( qi, s ) qj;

2) 8 :  ( u, s )   qj,  якщо  1 :  ( q, s ) qj;  

3) 8 :  ( qi, s ) q,  якщо  1 :  ( qi, s ) qj  &   qj  F1.

Тоді 

М8 = (Q8, , 8, u, F8). 

                 x     

 

 y                  x                  y

                    M2

Приклад  побудови  автоматів   М3 … M8   для   поданих автоматів  М1  та  М2  (рис.6.2) показаний на рис.6.3.

              x                  x

             

               y                   y                  x

                                       y

                          M1  

Рис.6.2. Початкові скінчені автомати.

Автомати  М7, М8  недетерміновані, але  від  них  завжди  можна  перейти до еквівалентних детермінованих.  

З леми 6.1 та означення регулярної множини безпосередньо прямує 

Теорема 6.1. Для довільного регулярного виразу існує  скінчений  автомат, що приймає цей вираз.

Має місце і зворотне твердження.

Теорема  6.2.  Мова,  що   представляється   скінченим   автоматом,  є регулярною множиною.

Доведення. Нехай  M = (Q, , , q0,  F) - скінчений автомат, і G  = (Q, E) - його граф,  Q = (q0, q1, … , qn). Кожному вхідному рядку  s  відповідає  шлях  у  графі  G.  Задача  полягає  у  побудові  регулярного виразу, що описує усі шляхи з  q0   до  усіх  qj  F.  

               x                  x

             

               y                   y                  x

                                       y

                          M3  

               y

                       y               y

                    

              x           x      x        x   x    x

                  

                    y                    y

              y

                             

                            4

               y

                       y               y

                    

              x           x      x        x   x    x

                  

                    y                    y

              y

                             

                            M5

               y

                       y               y

                    

              x           x      x        x   x    x

                  

                    y                    y

            y

                             

                            M6

               

                    x                  y

                    

                    y

               y         x    y            x         x

                                         y

              x                x                  

                                                         y

                            M7

                        x

                   x                  x       y

                            y  y

                       

                            y                    

            y                            x

   x                              

                            M8

Рис.6.3. Складені автомати  M3M8.

Спочатку побудуємо регулярний вираз  Vij, що відповідає усім  шляхам  з вершини qi  у вершину qj. Очевидно, що будь-який шлях з qi у qj може проходити через деяку множину  A Q  проміжних  вершин.  У  окремому випадку, можливо,  А = , або   А = {qi}.  Будемо  будувати Vij, послідовно поширюючи  А. Почнемо  з   А0  =  .  Це  означає,  що  розглядаються шляхи без проміжних вершин. Усім таким шляхам з qi у qj (i  j) відповідає регулярний вираз  

V0ij =   sk ,

                                                                     sk  Eij 

де  Eij    - множина вхідних символів, що переводять автомат  з qi у qj. Якщо  Еij = (i  j), будемо вважати  V0ij =  .  Крім  того,  для  всіх  i  {0, 1, … , n}    V0ij.

 Далі перейдемо до побудови V1ij, що описує усі шляхи з qi у qj з можливою проміжною вершиною q0,  тобто  А1 = {q0}.  Після  цього  розглянемо  А2 = {q0, q1} і так далі до   Аn+1   =  {q0, q1, … , qn}. Очевидно, що вираз  Vn+1ij, якому відповідає Аn+1, описує усі шляхи з  qi  у  qj, тобто  Vn+1ij = Vij.

Для  того, щоб показати, що Vn+1ij - регулярний вираз,  скористаємося індукцією за кількістю проміжних вершин  k. Коли  k = 0, твердження очевидне. Вірність твердження для  k+1  при припущенні  його для  k  прямує з формули 

Vk+1ij    = Vkij  Vkik  (Vkkk ) Vkkj.

де  Vkik - вираз, що описує усі шляхи з  qi  у  qj  з можливим використанням проміжних вершин q0, q1, … , qk-1. Усі вирази у правій частині формули за припущенням індукції регулярні,  а  тому  і  ліва  частина є регулярний вираз.

Отримавши   вирази Vij для  усіх  пар  вершин,  можна  скласти  регулярний вираз для  L(M), а саме 

                     L(M) =   V0j,

                                                                              qj  F 

чим і завершується доведення теореми. 

Зв’язок між скінченими автоматами та регулярними граматиками

Теорема 6.3. Мова представляється скінченим автоматом тоді і тільки тоді, коли вона породжується регулярною граматикою.

Доведення. Для поданого скінченого автомату

M = (Q, , , q, F) 

завжди можна побудувати регулярну граматику

G = (N, T, P, S),

де  N = Q, T = , S = q, а множина продукцій  Р  визначається так: 

             1) X  sY P, якщо   : (X, s) Y; 

             2) X s   P, якщо   : (X, s) Z,  та  Z F;              

             3) S     P, якщо     L(M).  

Тепер неважко показати,  що  для  кожного  x  *  умова  x  L(M) виконується тоді і тільки тоді, коли  x  L(G). Очевидно, що коли  q  F, то  приймається автоматом  М  і  виводиться правилом  S    у   граматиці  G,  та навпаки.

Якщо  x  L(M),  і  | x | = n, то   x = s1 s2sn ,   si  , i = 1, 2, … , n,   і тому у графі автомату  М  існує шлях, показаний на рис.6.4. 

                                 

                                  s1                s2             s3               sn-1            sn              

Рис.6.4. Шлях у автоматі  М.

Показані на рис.6.4 стани  Аi  N  не обов’язково усі різні, і  B  F. За побудовою граматики  G 

{S s1A1,  A1  s2A2, … , An-2  sn-1An-1, An-1  sn} P,

і відповідне дерево виводу має вигляд, показаний на  рис.6.5.

.

Рис.6.5. Дерево виводу

Листя наведеного дерева утворюють рядок символів, що виводиться  з символу  S. Таким чином,   x  L(G), тобто  L(M)  L(G).  Проводячи  міркування у зворотному напрямку, аналогічно одержуємо L(G)  L(M), і тому  L(G) = L(M). Отже за поданим  автоматом  завжди  можна  побудувати еквівалентну регулярну граматику.  

Тепер треба показати, що  за  поданою  регулярною  граматикою завжди можна побудувати еквівалентний автомат. Візьмемо граматику 

                       G1  = (N1, T1, P1, S1)                       

і побудуємо автомат  M1  = (Q1, 1, 1, q1, F1) таким чином 

1 = T1, q1 = S1, Q1 = N1 {τ} {π},

де τ - стан, у який  потрапляє  автомат   М1,  коли  вхідний  рядок  виводиться граматикою  G1, а  π - стан, що відповідає кожному  рядку  x  L(G). Множину F1  означимо так

                                              1) F1 = { τ }, якщо    L(G1),

2) F1 = { τ, q1}, якщо   L(G1),

а функцію  1  -

1)   1 :   (X, si )  Y,  якщо  X siY P1, 

2)   1 :   (X, si )  τ,  якщо  X si  P1, 

3)   1 :   (τ, si )  π  для усіх  si  1, 

4)   1 :   (π, si )  π  для усіх  si  1,

5)  1 :   (X, si )  π,  якщо  X si  P1  і для усіх Y N1    X siY P1.

 Нехай рядок  x = s1 s2sk  виводиться у граматиці  G1, тоді  з  правил побудови  1  випливає, що у графі автомату  М1  існує  шлях  з  S  у  τ, який  М1  проходить, коли   x  надходить на вхід. Таким чином  М1  приймає  x.  

Навпаки, коли автомат  М1  приймає рядок   x,  то,  очевидно,  у  граматиці  G1  існує сукупність правил, що дає змогу вивести  x  з  S.  Отже  L(M1) = L(G1), а це і означає вірність теореми.

Треба зауважити, що стан  π  було уведено тільки для того,  щоб  означити поведінку автомату  М1  при надходженні рядка   x  L(G1).

Наприклад, нехай

G1 = ({S, A, B}, {a, b}, P, S),

де  Р  складається з продукцій

1. S aA

2. S bB

                                                                3. A a

                                                                4. B b                                

Тоді  L(G1) = {aa, bb}. Автомат  М1, означений як у теоремі  6.3,  під  дією  входу   а  переходить у стан  А, під дією входу  аа - у заключний  стан   τ,  а  під дією входу  аb - у стан  π. Якби не  було  стану  π,  вхід   ab  переводив   М1   у  пусту  множину  станів.  Таким  чином   стан  π  принципового значення не має.

На підставі теорем 6.1, 6.2 та 6.3 можна зробити  висновок,  що  класи мов,  що  описуються  регулярними  виразами,  або  представляються  скінченими автоматами,  або  породжуються  регулярними  граматиками,  співпадають. Ці мови називають регулярними.


 

А также другие работы, которые могут Вас заинтересовать

2742. Изучение работы полупроводникового диода 106 KB
  Изучение работы полупроводникового диода Приборы и принадлежности: лабораторная панель Полупроводниковый диод, источник постоянного тока Б5-48, универсальный измерительный прибор В7-40, электронный осциллограф. Введение. Кристаллическим...
2743. Определение удельного заряда электрона из вольт-амперной характеристики вакуумного диода 161 KB
  Определение удельного заряда электрона из вольт-амперной характеристики вакуумного диода Приборы и принадлежности лабораторная панель Вакуумный диод, миллиамперметр постоянного тока, стабилизированные источники питания. Введение. Явление термоэле...
2744. Определение удельного заряда электрона методом магнетрона 175.5 KB
  Определение удельного заряда электрона методом магнетрона. Удельным зарядом электрона называется отношение заряда электрона к его массе – е/m. Эту величину можно определить различными экспериментальными методами, в том числе...
2745. Измерение сдвига фаз в цепях переменного тока 295.5 KB
  Измерение сдвига фаз в цепях переменного тока Приборы и принадлежности: лабораторная панель Переменный ток. Закон Ома с резистором, конденсатором и катушкой, источник переменного тока – генератор Г3-118, универсальный вольтметр В7-40...
2746. Закон Ома для цепей переменного тока 264 KB
  Закон Ома для цепей переменного тока Приборы и принадлежности: переменный резистор, катушка индуктивности, конденсатор, амперметр и вольтметр переменного тока. Введение. Закон Ома и правила Кирхгофа, установленные для постоянного тока, остаются спра...
2747. Медицинская конфликтология 361.51 KB
  Социальная роль медицины является предметом широкого общественного обсуждения в постреформенной России. Реализация Национального проекта Здоровье позволила решить некоторые насущные задачи, но породила и новые проблемы. Манифестацией конфликтогенных...
2748. Управление предприятием 748.81 KB
  Система управления предприятием и функции организационного менеджмента. Внутренняя и внешняя среда организации и их взаимосвязь.С точки зрения права, организация — самостоятельный хозяйствующий субъект, созданный в порядке, установленном Гражданским кодексом РФ, для производства продукции, выполнения работ и оказания услуг в целях удовлетворения общественных потребностей.
2749. Инновационный менеджмент 602.5 KB
  В пособии изложены основы инновационного менеджмента. Содержит основные понятия инноваций, классификацию инноваций, описание рынков инновационной деятельности, технологию управления инновационным процессом и новаторской деятельностью. В пособии отра...
2750. Организация и финансирование инвестиций 446.34 KB
  Организация и финансирование инвестиций В книге подробно рассмотрены особенности становления и развития инвестиционных процессов в коммерческой деятельности и предпринимательстве в современных условиях хозяйствования на примере России и зарубежных с...