68852

Примеры организации архитектуры компьютеров

Лекция

Информатика, кибернетика и программирование

Разрядность бит Тактовая частота мгц Величина питающего напряжения Вольт Гнездо для процессора Socket 7 Slot1 и др.5 МГц а быстродействие системы на вычислительных тестах достигало 104 Mflop Mflop единица измерения быстродействия процессора миллион операций с плавающей точкой в секунду.

Русский

2014-09-26

630.5 KB

1 чел.

PAGE  61

Тема 3. Приклади організації архітектури компютерів

Введение.

Процессором называется устройство способное выполнять программный код и определяющее основные функции компьютера по обработке информации или  это устройство, выполняющее определенные действия с данными.

В каждом компьютере существует центральный процессор (или процессоры), который координирует работу остальных частей системы и осуществляет обработку данных. Центральный процессор представляет собой арифметико-логическое устройство (АЛУ), устройство управления и набор регистров. АЛУ обеспечивает выполнение вычислительных действий. Устройство управления обеспечивает порядок выполнения операций и прерывания. Регистры играют роль памяти.

В настоящее время принято считать, что микропроцессор и процессор означают одно и тоже, функции у них одинаковы.

Современные требования к скорости обработки данных заставляют процессоры быть миниатюрными, т.к. приходится учитывать расстояния между элементами.

Самые распространенные центральные процессоры фирмы Intel относятся к классу процессоров со сложным набором команд (Сomplex Instruction-set Computing - CISC ). В настоящее время все большее распространение приобретают процессоры класса RISC (Reduced Instruction-set Computing) - процессоры с сокращенным набором команд. RISC-процессор имеет не больше 128 команд. Сокращенное количество команд позволяет увеличить скорость обработки данных.

Кроме центрального процессора, в компьютере могут быть и другие процессоры, обеспечивающие ввод/вывод, а также сопроцессоры и т.п.

В последнее время появились процессоры, устанавливаемые уже на работающие компьютеры дополнительно к существующим. Их называют OverDrive (дополнительный) и они позволяют повысить выходные параметры существующего процессора. Например, фирма Intel выпустила процессор Pentium OverDrive, который увеличивает вычислительные возможности систем на базе процессора i486, доводя их до уровня Pentium.

Конструктивно, процессоры могут выполняться как в виде одной большой монокристальной интегральной микросхемы – чипа, так и в виде нескольких микросхем, блоков электронных плат и устройств. В настоящее время, микропроцессоры и процессоры вмещают в себе миллионы транзисторов и других элементов электронной логики и представляют сложнейшие высокотехнологичные электронные устройства. Персональный компьютер содержит в своем составе довольно много различных процессоров. Они входят в состав систем ввода/вывода контроллеров устройств.

Каждое устройство:

системная шина (шины — это соединения маршрутов данных, связывающие центральный процессор компьютера с модулями оперативной памяти и иными устройствами, с которыми он взаимодействует);

оперативная память(system memory - оперативная память - память (в подавляющем большинстве случаев - DRAM), использующаяся для хранения активных программ и данных. Количество и быстродействие оперативной памяти оказывают чрезвычайно серьезное воздействие на быстродействие современных компьютеров. Работает на частоте системной шины. Доступ процессора к оперативной памяти происходит через кэш 2-го уровня. Некоторые подсистемы компьютера способны обращаться к оперативной памяти напрямую, минуя процессор;

кэш 2-го уровня - кэш между процессором и подсистемой памяти (memory subsystem - подсистема памяти - понимаемая как единое целое (обычно с целью обсуждения, например, вопросов быстродействия) совокупность системной шины, контроллера памяти и модулей.. Работает, как правило, на частоте шины и смонтирован на материнской плате (хотя в старших процессорах Intel его начали устанавливать в одной микросборке или модуле с процессором, а также увеличили частоту). Для кэша 2-го уровня практически всегда используется SRAM. Характерные емкости - от 256kB до 1MB на процессор. Объем и быстродействие кэша 2-го уровня оказывают значительное воздействие на быстродействие системы в целом. Следует иметь в виду, что иногда установка в систему дополнительной памяти (как правило, свыше 64MB) может заметно замедлить ее работу, если контроллер не поддерживает кэширование этой памяти;

-  контроллери - промежуточное устройство между устройствами компютера, например, - memory controller - контроллер памяти - промежуточное устройство между системной шиной и модулями памяти. Контроллер определяет возможные тип и рабочий режим используемой памяти (в стандартных решениях зачастую и форм-фактор), организует interleave, контроль четности или ECC и т.п. Иногда имеется возможность настройки ряда параметров из BIOS Setup, в других случаях определение типа памяти и режима работы происходит автоматически. В настоящее время, как правило, контроллер памяти является частью чипсета, поэтому пара чипсет-BIOS нередко однозначно определяет возможности контроллера (хотя иногда, особенно в материнских платах высшего уровня, применяется специфический контроллер).

– кэш(cache), буфер обмена между медленным устройством хранения данных и более быстрым. Принцип его действия основан на том, что простой более быстрого устройства сильно влияет на суммарную производительность, а также - что с наибольшей вероятностью запрашиваются данные, сохраненные сравнительно недавно. Поэтому между устройствами помещают небольшой (по сравнению со всеми хранимыми данными) буфер быстрой памяти, что позволяет снизить потери быстрого устройства как на записи, так и на чтении;

- ширина шины (bus width) - количество линий ввода-вывода, т.е. число бит, которое может быть передано одновременно (для устройств с контролем четности из этого количества иногда исключают линии, "отвечающие" за четность, как не передающие информации). Для системной шины определяется в первую очередь типом процессора. Увеличение ширины системной шины - простой способ увеличить общую производительность системы, однако это требует коренной перестройки программного обеспечения и периферии. Все процессоры, начиная с Pentium, имеют ширину шины 64 бит. Размер одного банка памяти кратен (как правило, равняется) ширине системной шины.

byte - байт - единица информации, состоящая из 8 бит, широко используется для практического измерения объемов данных (например, размера файла, а также, что важно для нас, объема оперативной памяти). Обозначается заглавной буквой B;

- интерфейсы накопителей информации, видеоадаптеры, звуковые адаптеры, клавиатура, периферийные устройства, chipset(чипсет, набор микросхем материнской платы, реализующих архитектуру компьютера. Как правило, контроллер памяти входит в состав чипсета, поэтому зная, какой именно чипсет применен в компьютере, можно сделать выводы о применяемой памяти) и др.) обслуживается своим собственным процессором или процессорами. Однако, архитектуру и конструктивное исполнение персонального компьютера определяет процессор или процессоры, контролирующие и обслуживающие системную шину и оперативную память, и, что более важно, выполняющие объектный код программ. Такие процессоры принято называть центральными или главными процессорами (Central Point Unit – CPU, Main processor). Центральные процессоры проектируются специально для разработки типовых моделей вычислительных устройств и устройств связи. На основе архитектуры центральных процессоров строится архитектура материнских плат, и проектируется архитектура и конструкция компьютера.

Главные процессоры персональных компьютеров IBM выпускаются различными фирмами-производителями, но имеют сходную базовую архитектуру микро-процессоров фирмы Intel (INTegrated ELectronics) и поддерживают на аппаратном и программном уровне их систему команд и организацию. Основными характеристиками центральных процессоров являются:

·        Тип архитектуры или серия (Intel x86, Intel Pentium, Pentium overdrive, RISC …)

·        Система поддерживаемых команд (standard 86/88, 286, 386, 486, Pentium, MMX) и адресации (real mode, protected mode, virtual mode, EMS, paging).

·        Разрядность (бит)

·        Тактовая частота (мгц)

·        Величина питающего напряжения (Вольт)

·        Гнездо для процессора (Socket 7, Slot1 и др.)

·        КЭШ

Тип архитектуры, как правило, определяется фирмой производителем оборудования. Все крупнейшие фирмы, производящие электронное оборудование для IBM-PC-совместимых компьютеров и выпускающие свои типы центральных процессоров вносят изменения в базовую архитектуру процессоров серии Intel x86 или разрабатывают свою. С типом архитектуры тесно связан набор поддерживаемых команд или инструкций, и их расширений. Эти два параметра, в основном, определяют качественный уровень возможностей персонального компьютера и в большой степени уровень его производительности.

Разрядность центрального процессора определяет его поколение и принципиально влияет на скорость передачи информации между другими устройствами и процессором. Первые процессоры серии Intel x86 имели разрядность 8 бит и могли передавать и принимать информацию по одному байту. Современные микро-процессоры персональных компьютеров имеют разрядность 32 бита для передачи информации внешним устройствам и 64 бита – для внутренних операций с информаций.

Тактовая частота процессора определяет минимальный квант времени за который процессор выполняет некоторую условную элементарную инструкцию. Тактовые частоты измеряются в мегагерцах и определяют количественные характеристики производительности компьютерных систем в целом. Чем больше (выше) тактовая частота, тем быстрее работает центральный процессор. В настоящее время технология производства центральных процессоров с высокой производительностью предусматривает их работу на очень высоких тактовых частотах, вследствие чего, устройства необходимо принудительно охлаждать. Для принудительного охлаждения процессоров используются пассивные системы – в виде радиаторов и активные системы – в виде радиаторов с вентиляторами

Как уже было отмечено, архитектура набора команд служит границей между аппаратурой и программным  обеспечением и представляет ту часть системы, которая видна программисту или разработчику компиляторов.

3.1.Классификация процессоров (CISC и RISC). Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на  современном этапе развития вычислительной техники являются архитектуры CISC (Complex Instruction Set Chip (микросхема с полным набором команд, процессор с полным набором команд, имеющий до 300 машинных инструкций.Процессоры фирмы Intel относятся к этому классу. Большинство инструкций выполняется более чем за один такт работы процессора.) и RISC (Reduced Instruction Set Chip (микросхема с сокращенным набором команд).

Процессор с новой архитектурой, команды выполняются за один такт работы. Количество команд сокращено до 100. RISC - процессор имеет меньшие размеры, чем CISC-процессор и команды выполняются быстрее. Примером RISC-процессора является процессор Alpha фирмы DEC.

3.1.1.Приклад комп’ютерів з CISC-архітектурою.

Основоположником  CISC-архитектуры можно считать компанию IBM с ее базовой архитектурой /360, ядро которой используется с1964  года и дошло до наших дней, например, в таких мейнфреймах как IBM/370, IBM ES/9000, APX i432, "Ельбрус" та ін.

Лидером в разработке микропроцессоров c полным набором команд (CISC - Complete Instruction Set Computer) считается компания Intel со своей серией x86 и Pentium. Эта архитектура является практическим стандартом для  рынка микрокомпьютеров. Для CISC-процессоров характерно:

- сравнительно небольшое число регистров общего  назначения;

- большое количество машинных команд, некоторые из которых нагружены семантически аналогично  операторам высокоуровневых языков программирования и выполняются за много тактов;

- большое количество  методов адресации;

- большое количество форматов команд различной разрядности;

- преобладание двухадресного  формата команд;

- наличие команд обработки типа регистр-память.

3.1.2.Приклад комп’ютерів з RISC-архітектурою.

Основой архитектуры современных рабочих станций и серверов является архитектура компьютера с сокращенным  набором команд (RISC - Reduced Instruction Set Computer). Зачатки этой архитектуры уходят своими корнями к

компьютерам CDC6600, разработчики которых (Торнтон, Крэй и др.) осознали важность упрощения набора команд  для построения быстрых вычислительных машин. Эту традицию упрощения архитектуры С. Крэй с успехом  применил при создании широко известной серии суперкомпьютеров компании Cray Research. Однако окончательно  понятие RISC в современном его понимании сформировалось на базе трех исследовательских проектов  компьютеров: процессора 801 компании IBM, процессора RISC университета Беркли и процессора MIPS Стенфордского университета. Такие компьютеры основаны на архитектуре, отделяющей команды обработки от команд работы с памятью, и делали упор на эффективную конвейерную обработку. Система команд разрабатывалась таким образом, чтобы выполнение любой команды занимало небольшое количество машинных тактов (предпочтительно один машинный такт). Сама логика выполнения команд с целью повышения производительности ориентировалась на аппаратную, а не на микропрограммную реализацию. Чтобы упростить логику декодирования команд использовались команды фиксированной длины и фиксированного формата.

Среди других особенностей RISC-архитектур следует отметить наличие достаточно большого регистрового файла (в типовых RISC-процессорах реализуются 32 или большее число регистров по сравнению с 8 - 16 регистрами в CISC-архитектурах), что позволяет большему объему данных храниться в регистрах на процессорном кристалле большее время и упрощает работу компилятора по распределению регистров под переменные. Для обработки, как правило, используются трехадресные команды, что помимо упрощения дешифрации дает возможность сохранять большее число переменных в регистрах без их последующей перезагрузки.

Развитие архитектуры RISC в значительной степени определялось прогрессом в области создания оптимизирующих компиляторов. Именно современная техника компиляции позволяет эффективно использовать преимущества большего регистрового файла, конвейерной организации и большей скорости выполнения команд. Современные компиляторы используют также преимущества другой оптимизационной техники для повышения производительности, обычно применяемой в процессорах RISC: реализацию задержанных переходов и суперскалярной обработки, позволяющей в один и тот же момент времени выдавать на выполнение несколько команд.

Следует отметить, что в последних разработках компании Intel (имеется в виду Pentium P54C и процессор следующего поколения P6), а также ее последователей-конкурентов (AMD R5, Cyrix M1, NexGen Nx586 и др.) широко используются идеи, реализованные в RISC-микропроцессорах, так что многие различия между CISC и RISC стираются. Однако сложность архитектуры и системы команд x86 остается и является главным фактором, ограничивающим производительность процессоров на ее основе.

3.1.3.Приклад комп’ютерів з конвейерною -архітектурою

Разработчики архитектуры компьютеров издавна прибегали к методам проектирования, известным под общим названием "совмещение операций", при котором аппаратура компьютера в любой момент времени выполняет одновременно более одной базовой операции. Этот общий метод включает два понятия: параллелизм и конвейеризацию. Хотя у них много общего и их зачастую трудно различать на практике, эти термины отражают два совершенно различных подхода. При параллелизме совмещение операций достигается путем воспроизведения в нескольких копиях аппаратной структуры. Высокая производительность достигается за счет одновременной работы всех элементов структур, осуществляющих решение различных частей задачи.

Конвейеризация (или конвейерная обработка) в общем случае основана на разделении подлежащей исполнению функции на более мелкие части, называемые ступенями, и выделении для каждой из них отдельного блока аппаратуры. Так обработку любой машинной команды можно разделить на несколько этапов (несколько ступеней), организовав передачу данных от одного этапа к следующему. При этом конвейерную обработку можно использовать для совмещения этапов выполнения разных команд. Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько команд. Конвейерная обработка такого рода широко применяется во всех современных быстродействующих процессорах.

Конвейеризация увеличивает пропускную способность процессора (количество команд, завершающихся в единицу времени), но она не сокращает время выполнения отдельной команды. В действительности, она даже несколько увеличивает время выполнения каждой команды из-за накладных расходов, связанных с управлением регистровыми станциями. Однако увеличение пропускной способности означает, что программа будет выполняться быстрее по сравнению с простой неконвейерной схемой.

Тот факт, что время выполнения каждой команды в конвейере не уменьшается, накладывает некоторые ограничения на практическую длину конвейера. Кроме ограничений, связанных с задержкой конвейера, имеются также ограничения, возникающие в результате несбалансированности задержки на каждой его ступени и из-за накладных расходов на конвейеризацию. Частота синхронизации не может быть выше, а, следовательно, такт синхронизации не может быть меньше, чем время, необходимое для работы наиболее медленной ступени конвейера. Накладные расходы на организацию конвейера возникают из-за задержки сигналов в конвейерных регистрах (защелках) и из-за перекосов сигналов синхронизации. Конвейерные регистры к длительности такта добавляют время установки и задержку распространения сигналов.

Рис. 3.1. Эффект конвейеризации при выполнении 3-х команд – четы             

               рехкратное ускорение

 

В предельном случае длительность такта можно уменьшить до суммы накладных расходов и перекоса сигналов синхронизации, однако при этом в такте не останется времени для выполнения полезной работы по преобразованию информации.

Конвейеризация эффективна только тогда, когда загрузка конвейера близка к полной, а скорость подачи новых команд и операндов соответствует максимальной производительности конвейера. Если произойдет задержка, то параллельно будет выполняться меньше операций и суммарная производительность снизится.

 При реализации конвейерной обработки возникают ситуации, которые препятствуют выполнению очередной команды из потока команд в предназначенном для нее такте.

 3.1.4. Суперскалярные процессоры

  Суперскалярный процессор представляет собой нечто большее, чем обычный последовательный (скалярный) процессор. В отличие от последнего, он может выполнять несколько операций за один такт. Основными компонентами суперскалярного процессора являются устройства для интерпретации команд, снабженные логикой, позволяющей определить, являются ли команды независимыми, и достаточное число исполняющих устройств. В исполняющих устройствах могут быть конвейеры. Суперскалярные процессоры реализуют параллелизм на уровне команд.

Примером компьютера с суперскалярным процессором является IBM RISC/6000. Тактовая частота процессора у ЭВМ была 62.5 МГц, а быстродействие системы на вычислительных тестах достигало 104 Mflop (Mflop - единица измерения быстродействия процессора - миллион операций с плавающей точкой в секунду). Суперскалярный процессор не требует специальных векторизующих компиляторов, хотя компилятор должен в этом случае учитывать особенности архитектуры.

  3.1.5 Процессоры с архитектурой 80x86 и Pentium

Обычно, когда новая архитектура создается одним архитектором или группой архитекторов, ее отдельные части очень хорошо подогнаны друг к другу и вся архитектура может быть описана достаточно связано. Этого нельзя сказать об архитектуре 80x86, поскольку это продукт нескольких независимых групп разработчиков, которые развивали эту архитектуру более 15 лет, добавляя новые возможности к первоначальному набору команд.

В 1978 году была анонсирована архитектура Intel 8086 как совместимое вверх расширение в то время успешного 8-бит микропроцессора 8080. 8086 представляет собой 16-битовую архитектуру со всеми внутренними регистрами, имеющими 16-битовую разрядность. Микропроцессор 8080 был просто построен на базе накапливающего сумматора (аккумулятора), но архитектура 8086 была расширена дополнительными регистрами. Поскольку почти каждый регистр в этой архитектуре имеет определенное назначение, 8086 по классификации частично можно отнести к машинам с накапливающим сумматором, а частично - к машинам с регистрами общего назначения, и его можно назвать расширенной машиной с накапливающим сумматором. Микропроцессор 8086 (точнее его версия 8088 с 8-битовой внешней шиной) стал основой завоевавшей в последствии весь мир серии компьютеров IBM PC, работающих под управлением операционной системы MS-DOS.

В 1980 году был анонсирован сопроцессор плавающей точки 8087. Эта архитектура расширила 8086 почти на 60 команд плавающей точки. Ее архитекторы отказались от расширенных накапливающих сумматоров для того, чтобы создать некий гибрид стеков и регистров, по сути расширенную стековую архитектуру. Полный набор стековых команд дополнен ограниченным набором команд типа регистр-память.

Анонсированный в 1982 году микропроцессор 80286, еще дальше расширил архитектуру 8086. Была создана сложная модель распределения и защиты памяти, расширено адресное пространство до 24 разрядов, а также добавлено небольшое число дополнительных команд. Поскольку очень важно было обеспечить выполнение без изменений программ, разработанных для 8086, в 80286 был предусмотрен режим реальных адресов, позволяющий машине выглядеть почти как 8086. В 1984 году компания IBM объявила об использовании этого процессора в своей новой серии персональных компьютеров IBM PC/AT.

В 1987 году появился микропроцессор 80386, который расширил архитектуру 80286 до 32 бит. В дополнение к 32-битовой архитектуре с 32-битовыми регистрами и 32-битовым адресным пространством, в микропроцессоре 80386 появились новые режимы адресации и дополнительные операции. Все эти расширения превратили 80386 в машину, по идеологии близкую к машинам с регистрами общего назначения. В дополнение к механизмам сегментации памяти, в микропроцессор 80386 была добавлена также поддержка страничной организации памяти. Также как и 80286, микропроцессор 80386 имеет режим выполнения программ, написанных для 8086. Хотя в то время базовой операционной системой для этих микропроцессоров оставалась MS-DOS, 32-разрядная архитектура и страничная организация памяти послужили основой для переноса на эту платформу операционной системы UNIX. Следует отметить, что для процессора 80286 была создана операционная система XENIX (сильно урезанный вариант системы UNIX).

Эта история иллюстрирует эффект, вызванный необходимостью обеспечения совместимости с 80x86, поскольку существовавшая база программного обеспечения на каждом шаге была слишком важной. К счастью, последующие процессоры (80486 в 1989 и Pentium в 1993 году) были нацелены на увеличение производительности и добавили к видимому пользователем набору команд только три новые команды, облегчающие организацию многопроцессорной работы.

Современное семейство процессоров i486 (i486SX, i486DX, i486DX2 и i486DX4), в котором сохранились система команд и методы адресации процессора i386, уже имеет некоторые свойства RISC-микропроцессоров. Например, наиболее употребительные команды выполняются за один такт.

Процессоры i486SX и i486DX - это 32-битовые процессоры с внутренней кэш-памятью емкостью 8 Кбайт и 32-битовой шиной данных. Основное отличие между ними заключается в том, что в процессоре i486SX отсутствует интегрированный сопроцессор плавающей точки. Поэтому он имеет меньшую цену и применяется в системах, для которых не очень важна производительность при обработке вещественных чисел. Для этих систем обычно возможно расширение с помощью внешнего сопроцессора i487SX.

Появившийся в 1993 году процессор Pentium ознаменовал собой новый этап в развитии архитектуры x86, связанный с адаптацией многих свойств процессоров с архитектурой RISC. Первоначальная реализация была рассчитана на работу с тактовой частотой 60 и 66 МГц. Процессор Pentium по сравнению со своими предшественниками обладает целым рядом улучшенных характеристик. Главными его особенностями являются:

·        двухпотоковая суперскалярная организация, допускающая параллельное выполнение пары простых команд;

·        наличие двух независимых двухканальных множественно-ассоциативных кэшей для команд и для данных, обеспечивающих выборку данных для двух операций в каждом такте;

·        динамическое прогнозирование переходов;

·        конвейерная организация устройства плавающей точки с 8 ступенями;

·        двоичная совместимость с существующими процессорами семейства 80x86.

Блок-схема процессора Pentium представлена на рис. 3.2. Прежде всего новая микроархитектура этого процессора базируется на идее суперскалярной обработки (правда с некоторыми ограничениями). Основные команды распределяются по двум независимым исполнительным устройствам (конвейерам U и V). Конвейер U может выполнять любые команды семейства x86, включая целочисленные команды и команды с плавающей точкой. Конвейер V предназначен для выполнения простых целочисленных команд и некоторых команд с плавающей точкой. Команды могут направляться в каждое из этих устройств одновременно, причем при выдаче устройством управления в одном такте пары команд более сложная команда поступает в конвейер U, а менее сложная - в конвейер V. Такая попарная выдача команд возможна правда только для ограниченного подмножества целочисленных команд. Команды арифметики с плавающей точкой не могут запускаться в паре с целочисленными командами. Одновременная выдача двух команд возможна только при отсутствии зависимостей по регистрам. При остановке команды по любой причине в одном конвейере, как правило останавливается и второй конвейер.

Остальные устройства процессора предназначены для снабжения конвейеров необходимыми командами и данными. В отличие от процессоров i486 в процессоре Pentium используется раздельная кэш-память команд и данных емкостью по 8 Кбайт, что обеспечивает независимость обращений. За один такт из каждой кэш-памяти могут считываться два слова. При этом кэш-память данных построена на принципах двухкратного расслоения, что обеспечивает одновременное считывание двух слов, принадлежащих одной строке кэш-памяти. Кэш-память команд хранит сразу три копии тегов, что позволяет в одном такте считывать два командных слова, принадлежащих либо одной строке, либо смежным строкам для обеспечения попарной выдачи команд, при этом третья копия тегов используется для организации протокола наблюдения за когерентностью состояния кэш-памяти. Для повышения эффективности перезагрузки кэш-памяти в процессоре применяется 64-битовая внешняя шина данных.

В процессоре предусмотрен механизм динамического прогнозирования направления переходов. С этой целью на кристалле размещена небольшая кэш-память, которая называется буфером целевых адресов переходов (BTB), и две независимые пары буферов предварительной выборки команд (по два 32-битовых буфера на каждый конвейер).

Рис. 3.2. Упрощенная блок схема процессора Pentium

Буфер целевых адресов переходов хранит адреса команд, которые находятся в буферах предварительной выборки. Работа буферов предварительной выборки организована таким образом, что в каждый момент времени осуществляется выборка команд только в один из буферов соответствующей пары. При обнаружении в потоке команд операции перехода вычисленный адрес перехода сравнивается с адресами, хранящимися в буфере BTB. В случае совпадения предсказывается, что переход будет выполнен, и разрешается работа другого буфера предварительной выборки, который начинает выдавать команды для выполнения в соответствующий конвейер. При несовпадении считается, что переход выполняться не будет и буфер предварительной выборки не переключается, продолжая обычный порядок выдачи команд. Это позволяет избежать простоев конвейеров при правильном прогнозе направления перехода.

Следует отметить, что возросшая производительность процессора Pentium требует и соответствующей организации системы на его основе. Компания Intel разработала и поставляет все необходимые для этого наборы микросхем. Прежде всего для согласования скорости с динамической основной памятью необходима кэш-память второго уровня. Контроллер кэш-памяти 82496 и микросхемы статической памяти 82491 обеспечивают построение такой кэш-памяти объемом 256 Кбайт и работу процессора без тактов ожидания. Для эффективной организации систем Intel разработала стандарт на высокопроизводительную локальную шину PCI. Выпускаются наборы микросхем для построения мощных компьютеров на ее основе.

PentiumPro (архитектура Р6) обеспечивает полную совместимость с процессорами предыдущих поколений. Он предназначен главным образом для поддержки высокопроизводительных 32-битовых вычислений в области САПР, трехмерной графики и мультимедиа: а также широкого круга коммерческих приложений баз данных. Для достижения высокой производительности необходимо использование технических решений, широко применяющихся при построении RISC-процессоров:

·        выполнение команд не в предписанной программой последовательности, что устраняет во многих случаях приостановку конвейеров из-за ожидания операндов операций;

·        использование методики переименования регистров, позволяющей увеличивать эффективный размер регистрового файла (малое количество регистров - одно из самых узких мест архитектуры x86);

·        расширение суперскалярных возможностей по отношению к процессору Pentium, в котором обеспечивается одновременная выдача только двух команд с достаточно жесткими ограничениями на их комбинации.

Кроме того, в борьбу за новое поколение процессоров x86 включились компании, ранее занимавшиеся изготовлением Intel-совместимых процессоров. Это компании Advanced Micro Devices (AMD), Cyrix Corp и NexGen. С точки зрения микроархитектуры наиболее близок к Pentium процессор М1 компании Cyrix, который должен появиться на рынке в ближайшее время. Также как и Pentium он имеет два конвейера и может выполнять до двух команд в одном такте. Однако в процессоре М1 число случаев, когда операции могут выполняться попарно, значительно увеличено. Кроме того в нем применяется методика обходов и ускорения пересылки данных, позволяющая устранить приостановку конвейеров во многих ситуациях, с которыми не справляется Pentium. Процессор содержит 32 физических регистра (вместо 8 логических, предусмотренных архитектурой x86) и применяет методику переименования регистров для устранения зависимостей по данным. Как и Pentium, процессор M1 для прогнозирования направления перехода использует буфер целевых адресов перехода емкостью 256 элементов, но кроме того поддерживает специальный стек возвратов, отслеживающий вызовы процедур и последующие возвраты.

Процессоры К5 компании AMD и Nx586 компании NexGen используют в корне другой подход. Основа их процессоров - очень быстрое RISC-ядро, выполняющее высокорегулярные операции в суперскалярном режиме. Внутренние форматы команд (ROP у компании AMD и RISC86 у компании NexGen) соответствуют традиционным системам команд RISC-процессоров. Все команды имеют одинаковую длину и кодируются в регулярном формате. Обращения к памяти выполняются специальными командами загрузки и записи. Как известно, архитектура x86 имеет очень сложную для декодирования систему команд. В процессорах K5 и Nx586 осуществляется аппаратная трансляция команд x86 в команды внутреннего формата, что дает лучшие условия для распараллеливания вычислений. В процессоре К5 имеются 40, а в процессоре Nx586 22 физических регистра, которые реализуют методику переименования. В процессоре К5 информация, необходимая для прогнозирования направления перехода, записывается прямо в кэш команд и хранится вместе с каждой строкой кэш-памяти. В процессоре Nx586 для этих целей используется кэш-память адресов переходов на 96 элементов.

Таким образом, компания Intel больше не обладает монополией на методы конструирования высокопроизводительных процессоров x86, и можно ожидать появления новых процессоров, не только не уступающих, но и возможно превосходящих по производительности процессоры компании, стоявшей у истоков этой архитектуры. Следует отметить, что сама компания Intel заключила стратегическое соглашение с компанией Hewlett-Packard на разработку следующего поколения микропроцессоров, в которых архитектура x86 будет сочетаться с архитектурой очень длинного командного слова (VLIW -архитектурой). Появление этих микропроцессоров не ожидается до конца 1998 года.

3.1.6. Процессор Pentium 4.

Pentium 4 процессор имеет несколько новых особенностей, обусловленных новой Intel NetBurst микро-архитектурой (в отличии от старой Р6): 20 ступенчатый конвейер, улучшенное динамическое выполнение, двойное хронометрирование ALU, кэш первого уровня, учетверение 100МГц системной шины и SSE2.

·        20 ступенчатый конвейер

Ядро Pentium 4 содержит 20 ступенчатый конвейер. 20 ступеней новой NetBurst микро-архитектуры сменили старые 10 (Р6-архитектуры), что позволило значительно повысить тактовую частоту. Ожидается, что первые процессоры Pentium 4 будут работать на частотах 1.4ГГц и выше, что на 266МГц больше максимальной частоты Pentium III.

·        Улучшенное динамическое выполнение

Потраченный в пустую цикл - это бич современных процессоров. Чтобы сократить количество пустых циклов, Pentium 4 включает способность исполнения с изменением последовательности. При этом поддерживается 126 инструкций одновременно, используются более лучшие алгоритмы прогноза вычислений. И поэтому, процессор работает более эффективно, нежели Pentium III. Intel заявил, что число ненужных условных переходов уменьшено на 30% по сравнению с тем, что имеет Р6". Это доработка должна сделать процессор намного быстрее.

       Более быстрый ALU

В самом ядре Pentium 4 находятся Арифметико-логические Устройства (ALUs). Более быстрый ALU Intel называвает "Двигателем быстрого выполнения" ("Rapid Execution Engine"). В Pentium 4 ALU работает на двойной частоте ядра, поэтому некоторые инструкции могут быть выполнены за половину такта (в 4 Pentium с частотой 1.4ГГц операции происходят на 2.8ГГц). Это существенно поднимает производительность процессора.

·        Trace Cache

В Pentium 4 находится так называемый Trace Cache. Данный кэш хранит декодированые микрооперации, около 12.000 одновременно, располагая их по линиям ветки для быстрого доступа. Напротив, Pentium III хранит в кэш х86 инструкции и не организует их таким же образом, поэтому время их загрузки больше.

Pentium 4 имеет 256к кэш типа ATC, работающего на полной частоте процессора. Кеш соединен с ядром CPU 256-разрядным трактом данных. На частоте 1.4ГГц пропускная способность этого кэш составляет 40Гб/с, что является важным показателем для CPU.

·        SSE2

В Pentium 4 144 новых инструкций SSE2. Это расширение до ММХ и SSE добавляет возможность манипулирования 128-битной SIMD арифметикой с целыми числами и 128-битной SIMD с числами с плавающей запятой с двойной точностью. Видео, звук, кодирование и изображение будет обрабатываться быстрее, так как процессор стал лучше работать с целыми числами. Финансовые, научные и проектные задачи будут решаться быстрее вследствие улучшений в работе с плавающей запятой.

·        400MГц Системная Шина

Самый быстрый из Pentium III предназначен для работы с 133 МГц внешней шиной (FSB). С пропускной способность 1 Гб/c, эта шина помехой при работе процессора с остальной частью системы. Вместо этого Pentium 4 будет использовать 100 МГц шину, учетверенную до 400МГц. 400МГц на 64-разрядной шине показывает пропускную способность 3.2 Гб/c (это в три раза лучше, чем Pentium III с шиной на частоте 133Мгц). Эта пропускная способность обеспечит хорошую связь между процессором и чипсетом i850 (Tehama), который будут поддерживать двойной канал RDRAM.

3.2. Перечень процессоров

Перечень процессоров включает: семейство/поколение, архитектура, тактовая частота, частота системной шины, объем кэш памяти первого уровня, объем кэш памяти второго уровня, технология изготовления, дата появления, наличие дополнительных наборов команд, физический интерфейс.

Intel

Pentium - самые первые процессоры семейства P5 появились в далеком марте 1993-го, тогда Intel, чтобы не повторить ошибки с i486 (суд отклонил иск Intel к AMD по поводу названия) решила дать своему детищу имя, которое впоследствии стало нарицательным. Первое поколение Pentium носило кодовое имя P5 он же 80501, напряжение питания 5 вольт расположение выводов матрица и выпускалось на тактовых частотах 60 и 66 МГц по 0.80-микронной технологии, правда стоит отметить, что частота шины у этих процессоров была равна частоте ядра. Выпускались они исключительно под Socket 4. Следующим шагом в развитии этого семейства стал P54 он же 80502, напряжение питания 3.3 вольта, расположение выводов - шахматная матрица. Появился ровно через год после P5. При его изготовлении использовался уже 0.50, а затем и 0.35-микронный технологический процесс. Тактовая частота была в пределах 75-200 МГц, а шина 50-66 МГц. Объем кэш памяти первого уровня 16Кб, причем впервые был применен раздельный кэш - 8 Кбайт на данные и 8 Кбайт на инструкции. Форм-фактор - Socket 5. Архитектура IA32, набор команд не менялся со времен i386.

Pentium w/MMX technology - следующим большим шагов стал выпуск P55, процессора в котором впервые был реализован новый набор из 57 команд MMX. Произошло это 8 января 1997 года. С развитием технологии процессоры стали выпускаться по 0.35 мкм технологии. Изменилось напряжение питания, уменьшилось до 2.8 вольта. соответственно потребовались изменения в конструктивах системных плат - требовалась установка дополнительного стабилизатора напряжения. Объем кэш памяти первого уровня был увеличен в два раза - 32 Кб. Тактовая частота 166-233 МГц, а шины исключительно 66 МГц. Рассчитан на Socket 7. На этом развитие линейки Pentium для настольных компьютеров было прекращено.

Tillamook - процессор, изначально создавшийся для применения в ноутбуках; благодаря усовершенствованному 0.25-микронному процессу, удалось одновременно поднять тактовую частоту вплоть до 266 МГц, а также снизить напряжение ядра и мощность. Таким образом, мобильные компьютеры встали в один ряд с настольными. Он является продолжением линейки Pentium и включает 32 Кб L1 кэша и набор MMX. Выпускался на тактовых частотах от 133 до 266+ МГц с частотой шины 60-66 МГц. Тип упаковки: TCP и MMC (хотя существуют переходники для установки Tilamook в гнездо Super7). Появился 8 января 1997 года.

Pentium Pro - первый процессор шестого поколения. Довольно революционный для своего времени. В нем впервые Intel решилась применить кэш память второго уровня, объединенную в одном корпусе с ядром и оперирующую на частоте процессора. Имел очень высокую себестоимость изготовления, которая так практически и не снизилась за все время его существования с 1 ноября 1995 года. Выпускался как по 0.50, так и по 0.35-микронной технологии, 0.35 мкм позволили увеличить объем кэша. Кэш второго уровня имел объем 256, 512, 1024 и 2048 Кб. Тактовая частота от 150 до 200МГц. Частота системной шины 60-66 МГц. Кэш первого уровня объемом 16Кб. Выпускался исключительно для Socket 8. Pentium Pro поддерживал все инструкции процессора Pentium (естественно, не MMX), а также ряд новых по сравнению с Pentium инструкций (cmov, fcomi, и т.д.). Введена двойная независимая шина. В дальнейшем все их унаследовал Pentium II (в свое время, задолго до своего выпуска, Klamath представлялся просто как Pentium Pro с добавлением MMX и улучшенной работой с 16-бит приложениями). Значительно опередил свое время.

Pentium II/III - семейство P6/6x86, впервые появился в мае 1997 года. Объединяет общим именем процессоры, предназначенные для разных сегментов рынка. Pentium II (Klamath, Deschutes, Katmai и др.) для массового рынка ПК среднего уровня, Celeron (Covington, Mendocino, Dixon и др.) - для недорогих low-end компьютеров, Xeon (Xeon, Tanner, Cascades и др.) для высокопроизводительных серверов и рабочих станций. Имеет модификации для Slot 1, Slot 2, Socket 370, а также варианты в мобильном исполнении. Ниже мы рассмотрим каждое семейство в отдельности.

Klamath - самый первый процессор линейки Pentium II. Изготавливался по уже устаревшей 0.35-микронной технологии, а потому диапазон тактовых частот всего 233-300 МГц. Частота системной шины - 66 МГц, кэш память второго уровня - 512 Кб, которая размещена на процессорной плате и работает на половине частоты процессора. Ранние модели выпускались как с 256 Кбайт, так и с 512 Кбайт кэша L2. Кэш первого уровня 32 Кб. Дополнен MMX блоком. Питание 2.8 В. Это также первый процессор для Slot 1 (картридж - SECC). Увидел свет 7 мая 1997 года.

Deschutes - дальнейшее развитие линейки Pentium II, усовершенствованная технология изготовления 0.25 микрон, питание - 2.0 В. Соответственно, удалось поднять тактовую частоту 266-450+ МГц, частота системной шины 66-100 МГц, кэш память второго уровня 512 Кб размещена на процессорной плате, вышел 26 января 1998 , Slot 1. Кэш первого уровня 32 Кб. Последнее ядро, официально применявшееся в процессорах Pentium II. Хотя последние модели Pentium II 350-450 шли с ядром, уже больше напоминавшим Katmai - только, естественно, с обрезанным SSE. Да и картридж тогда уже стал SECC2 (кэш с одной стороны от ядра (а не с двух, как в стандартном Deschutes, измененное крепление кулера.).

Tonga - процессор, построенный на 0.25 микронном ядре Deschutes. Тактовая частота в диапазоне 233-300+ МГц, шина - стандартные 66 МГц. Выпускается как Mini Cartridge Connector и Mobile Module Connector 1 и 2 (MMC-1 и 2).

Katmai - Прямой наследник Deschutes. Изменения - добавился блок SSE (Streaming SIMD Extensions), слегка расширен набор команд MMX, усовершенствован механизм потокового доступа к памяти. Техпроцесс 0.25 мкм, тактовая частота 450-600 МГц МГц, кэш память второго уровня 512 Кб размещена на процессорной плате Частота шины 100 МГц, но в сентябре 1999, в связи с задержкой Coppermine, вышли 533 и 600 МГц модели, рассчитанные на частоту системной шины 133 МГц. 

Celeron - революционный в некотором смысле процессор, Intel наконец-то обратила внимание на массовый рынок недорогих компьютеров. В общем, это целое семейство недорогих процессоров как с кэшем второго уровня, так и без оного. В данный момент выпускались или выпускаются следующие его представители Covington, Mendocino, Dixon. Впервые появился в апреле 1998 года. Выпускается в вариантах для Socket 370, Slot 1.

Covington - первый процессор линейки Celeron. Построен на ядре Deschutes и выпускался по 0.25-микронной технологии. Тактовая частота 266-300 МГц, частота системной шины 66 МГц, кэш L1 - 32 Кбайт (по 16 Кбайт для данных и инструкций), кэш L2 отсутствует. Впервые появился 15 апреля 1998 года. Для уменьшения себестоимости выпускался без кэш памяти второго уровня и защитного картриджа. Питание - 2.0 В. Физический интерфейс - облегченный Slot 1 (SEPP - Single Edge Pin Package).

Mendocino - является развитием линейки Celeron. В отличие от своего предшественника имеет кэш память второго уровня объемом 128 Кб, интегрированную на одном кристалле с ядром. Тактовая частота - 300-533 МГц, используемая частота системной шины - 66 МГц. Технологический процесс - 0.25 мкм, для Socket-370 моделей - 0.22 мкм, чем объясняется их лучшая разгоняемость. Благодаря тому, что кэш оперирует на частоте процессора, имеет весьма неплохую производительность. Вышел 8 августа 1998. Питание - 2.0 В. Первоначальный форм-фактор - Slot-1, некоторое время параллельно существовали Slot-1 (300A - 433 МГц) и Socket-370 (300A - 533 МГц) варианты, сегодня первый плавно вытесняется в пользу последнего.

Dixon - следующий пункт в истории Celeron. Недорогой процессор в первую очередь ориентированный на применение в ноутбуках. Изготавливается по 0.25 микронной технологии. Объем кэш памяти первого уровня - 32 Кб. Как и в Mendocino, кэш второго уровня расположен на чипе, однако его объем увеличен до 256Кб. Тактовая частота - от 300 МГц (Celeron 3090A) и до 500 МГц, частота системной шины - 66 МГц. Официальная классификация - мобильный Pentium II.

Coppermine - Pentium III, сделанный на базе 0.18 мкм техпроцесса,  с интегрированными на чип 256 Кбайт кэша L2. Скорость - от 533 МГц и выше. Наряду с FSB133 версиями продаются и FSB100 варианты (например, 667/650 МГц). Максимальная предполагаемая на сегодня скорость - 1 ГГц во второй половине 2000 года. Форм-фактор - Slot-1. Последний Slot-1 процессор.

Coppermine (FC-PGA 370) - более дешевый вариант Coppermine в форм-факторе FlipChip PGA 370, рассчитанный на использование с Socket-370 материнскими платами (хотя с форм-фактором PPGA, используемом Celeron Socket-370 эти процессоры не совместимы) и частоту системной шины 100 МГц. FC-PGA Coppermine ниже 600 МГц официально не поддерживают режим мультипроцессорности - SMP. Тактовая частота начинается с 500 МГц, дальнейшее увеличение скорости происходит в рамках всей линейки Coppermine до 1.13 ГГц. Питание - 1.65 В. В течение первой половины 2000 года существует совместно со Slot1 вариантом процессора, потом предполагается вытеснение Slot1.

Coppermine 128К - новый этап развития линейки Celeron. Начиная со скорости 566 МГц, Celeron обзавелся новым процессорным ядром - Coppermine с урезанным до 128 Кбайт кэшем L2. Соответственно, по своим характеристикам процессор максимально близок к Pentium III, построенным на базе Coppermine, в том числе впервые для Celeron включает поддержку SSE. Ожидается рост до 900 МГц и выше, переход на 0.13 мкм и частоту системной шины 100 МГц.

Tualatin - Socket-370 Pentium III, сделанный по 0.13 мкм техпроцессу. Последний Pentium III. Тактовая частота - 1.26 ГГц, системная шина - 133 МГц, данных о других вариантах процессора на сегодня нет.

Timna - Coppermine 128K с интегрированным на чипе графическим ядром и контроллером SDRAM. То есть, фактически, уже больше чипсет, нежели процессор. Нацелен на сверхдешевые PC и телеприставки. Отменен, в связи с проблемами в MTH и общей ситуацией на рынке.

Xeon - спустя несколько лет Intel решилась на выпуск замены Pentium Pro. Как и в его предшественнике, кэш память второго уровня здесь оперирует на частоте процессора. Правда, если в PPro кэш и ядро были объединены одним корпусом, то в Xeon одним картриджем. Это первый процессор для Slot 2, и предназначен в первую очередь для мощных серверов и рабочих станций. Способен работать в мультипроцессорных конфигурациях. Построен на ядре Deschutes и выпускается, как и собственный кэш, по 0.25 микронной технологии. Кстати сам кэш имеет объем 512, 1024, 2048Кб, что во многом определяет высокую стоимость и тепловыделение.

Tanner - Pentium III Xeon, то есть, от Xeon отличается, примерно также, как Katmai от Deschutes.  Предназначен, в первую очередь, для hi-end серверов. Тактовая частота от 500 МГц, частота системной шины 100 МГц, как и положено всем Xeon'ам CSRAM-кэш второго уровня, работающий на частоте процессора, объемом 512, 1024 и 2048 Кб. Естественно MMX и SSE, кэш первого уровня все тот же - 32Кб.

Cascades - Pentium III Xeon на базе 0.18 мкм технологического процесса. Фактически, серверный вариант Coppermine. На чипе содержится кэш L2 256 Кбайт, тактовая частота от 600 МГц, частота системной шины - 133 МГц. Первые варианты работают только в двухпроцессорных конфигурациях и только на частоте системной шины 133 МГц. В конце 2000 года все же обзавелся 2 Мбайт кэша L2 на чипе. Финальная тактовая частота - 900 МГц для полноценной версии, 1 ГГц - для версии с 256 Кбайт L2. Форм-фактор - Slot-2

Willamette aka Pentium 4 - следующий после Coppermine принципиально новый IA-32 процессор Intel для обычных PC. Использует новую системную шину вместо старой GTL+ - Quad Pumped 100 МГц, с результирующей частотой 400 МГц. Кэш L1 - 8 Кбайт, L2 - 256 Кбайт, предпринят ряд шагов, направленных на увеличение производительности: добавленные исполнительные модули, декодеры, увеличенный объем буферов, и т.д. Введен новый набор инструкций - SSE2, на который Intel делает большую ставку в плане увеличения производительности нового процессора. Вышел 20 октября 2000 года с тактовой частотой 1.4-1.5 ГГц. В течение 2001 года должен дорасти до 1.7 ГГц, после чего уступить свое место Northwood. Форм-фактор - Socket-423.

Northwood  - 0.13 мкм вариант Pentium 4. Одновременно происходит переход на новый форм-фактор, Socket-478. Именно этот процессор должен стать основным в ассортименте Intel на долгое время, сменив на этом посту линейку Katmai/Coppermine. Исходная тактовая частота - 2 ГГц. 

Foster - серверный вариант Willamette. Частота системной шины - 400 МГц. Как и в случае с Cascades, объем кэша L2 остался тем же, что у базовой версии - Willamette. Тактовая частота - от 1.7 ГГц. Предполагаемый срок выхода - начало 2001 года. Предполагаемый форм-фактор - Socket-603. 

Prestonia - новый 0.13 мкм IA-32 серверный процессор Intel, продолжение линейки Xeon. По отношению к Foster является тем же самым, чем является Northwood по отношению к Willamette. Выходит в первой половине 2002 года. 

Merced aka Itanium - первый процессор архитектуры IA-64, аппаратно совместим с архитектурой IA-32, будет включать трехуровневую кэш память 2-4 Мбайт, включая память L0. Производительность будет примерно в три раза выше чем у Tanner. Технология изготовления 0.18 микрон, тактовая частота начиная с 800 МГц, частота системной шины - 266 МГц. Будет превосходить Pentium Pro по операциям FPU в 20 (!!!) раз. Физический интерфейс: Slot M. По умолчанию: MMX, SSE. Планируемый срок выхода - первая половина 2001 года. В продажу пойдет под названием Itanium.

Itanium - торговая марка, под которой будет продаваться процессор с кодовым названием Merced.

McKinley – вышел в 2001 года, второе поколение процессоров архитектуры IA-64, тактовая частота начиная 1000 МГц. Предполагается, что производительность, по сравнению с Merced, возрастет вдвое. А также, втрое поднимется пропускная способность шины данных, имеющей результирующую частоту 400 МГц, увеличенный (по сравнению с Merced) объем кэша второго уровня и скорости за 1 ГГц. Как водится 0.18-ти, а через год и 0.13-микронная технология изготовления. Физический интерфейс - Slot M.

Madison - преемник McKinley, выщел в 2002 году, другими словами это тот же McKinley, но построенный по медной, 0.13-микронной технологии.

Deerfield - процессор, вышел в 2003 году. Изготовляется по 0.13 микронной медной технологии Motorola. Является преемником Foster'a. Позиционируется как недорогой процессор архитектуры IA64 рабочих станций и серверов среднего уровня.

AMD

K5 - первый процессор AMD, который всерьез предназначался для конкуренции с Pentium. Платформа - Socket 5. Подобно Cyrix 6x86, использовал PR-рейтинг, от 75 до 166 МГц. При этом, используемая частота системной шины составляла от 50 до 66 МГц. Кэш L1 24 Кбайт (16 Кбайт для инструкций и 8 для данных), кэш L2 на материнской плате, работает на частоте системной шины. Существовало четыре версии процессора: K5-75, 90, 100 (PR-rating соответствовал частоте процессора, технологический процесс 0.6 мкм). Процессор K5-100 (0.35 мкм), процессоры K5-PR120, PR133 (PR-рейтинг соответствует частотам 90 и 100 MHz, технологический процесс 0.35 мкм, переработанное ядро). И процессор K5-PR166 (реальная частота 66MHz x 1.75) с нестандартным коэффициентом умножения.

K6 - начал поставляться с апреля 1997 года (это Model 6), на месяц раньше выхода Pentium II, производился на базе 0.35 мкм (позднее 233 MHz К6 производились с использованием 0.25 мкм процесса) технологического процесса. Процессор работал на частоте от 166 до 233 МГц (Причем последний - официально разогнанный вариант - 3.2/3.3В вместо стандартных 2.9/3.3В). Был создан на базе дизайна процессора 686, созданного приобретенной AMD компанией NexGen. По сравнению со своим предшественником, получил модуль MMX, увеличился объем кэша L1 - до 64 Кбайт (По 32 Кбайт для инструкций и данных), возросшая тактовая частота позволила AMD отказаться от PR-рейтинга. В К5 предлагались решения, которые позволяли добиться большей производительности на той же частоте, а именно исполнение по предположению и внутренняя риск - подобная организация. Все последующие процессоры от AMD унаследовали это свойство. Позднее начались поставки K6 Model 7 (мобильный вариант) с частотами 266 и 300 MHz, технологический процесс 0.25 мкм, FSB 66 MHz.

K6-2 - следующее поколение K6. Вышел в мае 98 года, основными усовершенствованиям относительно его предшественника стали поддержка дополнительного набора инструкций 3DNow! и частоты системной шины 100 МГц. Кэш L1 64 Кбайт (по 32 Кбайт для инструкций и данных), кэш L2 находится на материнской плате, и может иметь объем от 512 Кбайт до 2 МБайт, работая на частоте системной шины. Был выпущен на частоте 266 МГц, сегодня максимальная тактовая частота составляет 475 МГц, в скором времени должен выйти 500 МГц вариант. Было две модели процессора K6-2: первая, работающая на частотах 266 (66*4), 300 (100*3), 333 (95*3.5), 350 (100*3.5) и 366 (66.*5.5) MHz. И вторая модель AMD, работающая с частотами 380, 400, 450 и 475MHz. В ней используется новое ядро, такое же, как в K6-III, главное отличие в новом ядре (CXT) это модифицированный метод работы с кэшем.

Sharptooth (K6-III) - первый процессор от AMD, имеющий кэш второго уровня на ядре. Последний их процессор, сделанный под платформу Socket 7. Фактически, представляет из себя просто K6-2 с 256 Кбайт кэша L2 на чипе, работающих на той же частоте, что и процессор. Кэш L1 имеет объем 64 Кбайт (по 32 Кбайт для инструкций и данных), кэш L3 находится на материнской плате, и может иметь объем от 512 Кбайт до 2 МБайт, работая на частоте системной шины. Был выпущен в феврале 99 года в вариантах 400 и 450 МГц.

K6-2+ - один из последних Socket7 процессоров AMD. И первый Socket7 процессор, сделанный с использованием 0.18 мкм техпроцесса. Должен содержать на чипе 128 Кбайт кэша L2, работающих на частоте процессора. Предполагаемая скорость - от 533 МГц. Естественно, поддержка 3DNow!. Предполагаемый срок выхода - весна 2000 года.

K6-III+ - возможно, несколько позже K6-2+, AMD выпустит и 0.18 мкм вариант K6-III - с 256 Кбайт кэша L2 на чипе. 

Argon - кодовое название использованного в K7 ядра.

K7 (Athlon) - Первый проект AMD, в котором она была вынуждена отойти от прямого копирования архитектур Intel, и предложить рынку свой вариант платформы для PC. Процессор имеет непревзойденный для сегодняшних x86 процессоров объем кэша первого уровня - 128 Кбайт (по 64 Кбайт для инструкций и данных). Кэш L2 - 512 Кбайт, работающий на 1/2 или 2/5 частоты процессора. Системная шина - EV-6, та же, что и в процессорах Alpha, что потенциально дает возможность создания материнских плат, поддерживающих оба процессора. Скорость системной шины - 200 МГц, но имеет потенциал до 400 МГц и выше. Поддерживаемые наборы инструкций - MMX, расширенный по сравнению с K6-III 3DNow!. Форм-фактор - Slot A. Первый процессор AMD, получивший при выходе собственное имя - Athlon. На сегодня доступны модели 500-850 МГц.

Thunderbird - 0.18 мкм версия Athlon с использованием технологии медных соединений. На чипе интегрированы 256 Кбайт полноскоростного кэша L2. В качестве переходного выпускался Slot-A вариант, но в массе своей процессор ознаменовал собой переход на Socket-A. Максимально доступная на сегодняшний день тактовая частота - 1.26 ГГц.  

Spitfire aka Duron - вариант Thunderbird с урезанным кэшем L2 - 64 Кбайт. Производится только с использованием алюминиевых соединений на Fab25 в Техасе. Максимально доступная на сегодняшний день тактовая частота - 800 МГц. 

Mustang - серверный вариант Athlon. Кэш L2 объемом 1-2 Мбайт, интегрированный в чип. Процессор рассчитан на использование системной шины 266 МГц и DDR SDRAM памяти. Отменен.

Palomino - версия Athlon на базе ядра Mustang. Предполагаются незначительные архитектурные изменения с целью улучшения скоростного потенциала процессора. Предполагаемая тактовая частота - от 1.4 ГГц и выше. Срок выхода - первый квартал 2001 года.

Morgan - по отношению к Palomino то же, что Duron по отношению к Thunderbird. Выходит во втором квартале 2001 года.

Thoroughbred - 0.13 мкм версия Athlon. Предполагаемая тактовая частота - в районе 2 ГГц. Срок выхода - вторая половина 2001 года.

Appaloosa - 0.13 мкм версия Duron.  

ClawHammer - первый 64-бит процессор AMD. Или, по крайней мере,  частично 64-бит. В отличие от Itanium, этот процессор будет ориентирован главным образом на 32-бит инструкции, нежели наоборот. Одновременно с его выходом ожидается появление новой шины  - Lightning Data Transport (LDT), используемой для связи с процессорами и устройствами ввода/вывода. LDT должна стать не заменой, а дополнением к системной шине EV6 или EV7. Предполагаемая скорость - 2 ГГц и выше, предполагаемый срок выхода - первая половина 2002 года.

SledgeHammer - серверный вариант ClawHammer. Предполагаемый срок выхода - 2002 год.

Cyrix

6x86 - или M1. Для оценки производительности использовался PR-рейтинг, когда производительность процессора сравнивается со скоростью процессора Pentium, на которой ему пришлось бы работать для достижения той же производительности. PR-рейтинг 6x86 составлял от 120 до 200 МГц. Есть усточйивое мнение, что первоначальные варианты процессора были знамениты наличием ошибок, ведших к частым зависаниям PC, и необходимости для производителей программ выпускать патчи специально под этот процессор. На самом деле все проблемы были связаны именно с ошибками в программах. Особенно известны проблемы с программами, написанными на Clipper. Слухи про проблемы под Windows NT не подтвердились. Кэш первого уровня - 16 Кбайт (единый). Частота системной шины - от 50 до 75 МГц. Платформа - Socket 5, затем, когда появилась версия с двойным питанием - Socket 7.

MediaGX - ответвление в семействе процессоров Cyrix, первый процессор, сделанный по идеологии PC-on-a-chip. К ядру 5х86 были добавлены контроллеры памяти и PCI, в чип интегрирован видеоускоритель, с кадровым буфером в основной памяти PC. И лишь в самых последних моделях используется ядро 6x86. В чипе-компаньоне реализован мост PCI-ISA и интегрирован звук. PR-рейтинг от 180 до 233 МГц, кэш L1 16 кбайт (единый). Производился по техпроцессу 0.5 мкм. Сегодня National делает на базе этого процессора два продукта - Geode GXLV (0.35 мкм, 166-266 МГц) и Geode GX1400 (с добавленной аппаратной поддержкой MPEG-2, Dolby AC3 и т.д). 

6x86MX (Позднее переименован в M-II) - несколько переработанный для большей производительности 6x86. Вчетверо увеличился кэш L1 - до 64 Кбайт (единый), увеличилась общая производительность процессора, добавился блок MMX, появилась поддержка раздельного питания.  Использовал частоту системной шины от 60 до 75 МГц. Использовал PR-рейтинг от 166 до 266 МГц. Процессоры 6х86MX делала и компания IBM. Их 6х86MX имели рейтинг от 166 до 333 и были рассчитаны на шину 66, 75 или 83 MHz. Позднее, по маркетинговым соображениям, Cyrix переименовал свои процы в M-II, а IBM до конца сотрудничества продавало их под маркой 6x86MX.

MII - последний процессор Cyrix, начал производиться в марте 98 года. Кэш первого уровня - 64 Кбайт (единый), L2 - как обычно, для Socket 7, находится на материнской плате, и имеет объем от 512 Кбайт до 2 МБайт, работая на частоте системной шины. Поддерживаемые наборы инструкций - MMX. Использует PR-рейтинг. Реальная скорость в МГц, как правило, значительно ниже - так, Cyrix MII PR366 имеет реальную скорость 250 МГц. При производстве применяется техпроцесс 0.25 мкм. Продаются модели, имеющие PR-рейтинг 300-433 МГц.

Cayenne - кодовое название ядра, используемого в Gobi и MediaPC.

Gobi (MII+) - процессор имеет сразу два кодовых имени, что несколько необычно. Вначале он назывался Jedi, но в дальнейшем, по требованию владельца авторских прав на это название, Lucas Film, был переименован в Gobi. Первый из процессоров Cyrix, рассчитанный на платформу Socket 370. Поддерживаемые наборы инструкций - MMX, 3DNow!. Значительно переработан блок операций с числами с плавающей запятой.  Кэш L1 - 64 Кбайт (единый), кэш L2 - 256 Кбайт на чипе, работающие на полной частоте процессора. Выпускается 22 февраля фирмой VIA, под именем Joshua. 

MediaPC - продолжатель дела MediaGX, Socket-7 процессор, работающий на скорости от 233 до 300 МГц. То же ядро, что и в Gobi, с добавленными графическим ускорителем и периферийными контроллерами. Статус неясен. 

Mxi - Socket 7 Pc-on-a-chip, построенный все на том же ядре Cayenne, должен превосходить по скорости MediaPC - 333-400 МГц. Статус неясен.

Jalapeno - кодовое название ядра, использумого в Mojave.

Mojave (M3) - процессор содержит 32 Кбайт (по 16 для данных и инструкций) кэша L1, и 256 Кбайт интегрированного на чипе кэша L2. 0.18 мкм техпроцесс, значительно улучшенная по сравнению с предшественниками архитектура. Поддерживаемые наборы инструкций - MMX, 3DNow!. Скорость в момент выпуска - 600-800 МГц (не PR-рейтинг), скорость системной шины - 100-133 МГц. Чип будет иметь интегрированные контроллер памяти и 3D ускоритель. В связи с покупкой Cyrix VIA вряд ли когда-нибудь появится. 

Rise

mP6 - первый процессор компании Rise, преимущественно предназначен для ноутбуков, использующих Socket 7 процессоры. Соответственно, отличается очень малым тепловыделением. Кэш L1 - 16 Кбайт (по 8 кбайт для данных и инструкций), L2 - на материнской плате, от 512 Кбайт до 2 Мбайт, работает на частоте системной шины. Поддерживается дополнительный набор инструкций MMX. При оценке производительности своих процессоров, Rise, как и Cyrix, использует PR-рейтинг.  PR-рейтинг от 166 до 366МГц. 

mP6 II - то же самое, по сравнению с mP6, что и K6-III по сравнению с K6-2. То же ядро, к которому добавлено 256 Кбайт кэша L2 на чипе. Была обещана
поддержка SSE, производительность от PR-200 и выше. В августе 99 было объявлено об отмене планов по выходу процессора, в связи со значительным его удорожанием после добавления кэша L2 на чип.

Tiger - mP6 II для платформы Socket 370. 16 Кбайт кэша L1, 256 Кбайт кэша L2, работающего на тактовой частоте процессора. Выпуск отменен.

Centaur Winchip С6 - процессор изначально создавался, будучи ориентированным на дешевые PC, как следствие, по скорости уступал по производительности своим конкурентам. Системная шина - 60, 66, 75 МГц, платформа - Socket 5. При производстве использовался техпроцесс 0.35 мкм. Поддерживаемый набор инструкций - MMX. Вышел в октябре 1997 года, работал на скоростях от 180 до 240 МГц.

Winchip-2 - производится по техпроцессу 0.25 мкм. Кэш L1 64 Кбайт (по 32 Кбайт для инструкций и данных), кэш L2 находится на материнской плате, 512 Кбайт - 2 Мбайт. Поддерживаются наборы инструкций MMX и 3DNow!. Платформа - Socket 7. От Winchip отличается значительно ускорившейся работой с числами с плавающей запятой. Появилась поддержка частоты системной шины 100 МГц. Появился в ноябре 98 года, скорость от 200 до 300 МГц.

Winchip-2A - Winchip-2 с исправленной ошибкой в реализации 3DNow.

Winchip-3 - Кэш L1 64 Кбайт (по 32 Кбайт для инструкций и данных), кэш L2 - 128 Кбайт на чипе, работающих на частоте процессора, кэш L3 находится на материнской плате, 512 Кбайт-2 Мбайт. Планировался к выходу в первой половине 99 года, со скоростью 300 МГц и выше. В связи с покупкой Centaur VIA, по всей видимости, выход процессора был отменен.

Winchip-4 - Планировался к выходу в конце 99 года, на скоростях порядка 400-500 МГц, а при переходе на 0.18 мкм техпроцесс - и 500-700 МГц. Предполагалась смена форм-фактора. 

VIA

Joshua - первым процессором VIA, намеченным к выпуску, стал приобретенный вместе с Cyrix их дизайн Gobi. Детали см. в разделе Cyrix. 

Samuel - ядро Winchip4, доставшееся VIA в наследство от Centaur, чип работает на частоте 500-700 МГц, производиться National и TSMC с использованием 0.18 мкм техпроцесса. Процессор использует SIMD набор 3DNow!, форм-фактор - Socket-370. Кэш L1 128 Кбайт.  Быстро сменил собой Joshua под тем же именем Cyrix III. Тактовая частота - 500-667 МГц. 

Samuel 2 - следующее ядро группы Centaur. Добавился кэш L2 объемом 64 Кбайт, увеличилась тактовая частота - 667-800+ МГц. Частота системной шины 100/133 МГц, форм-фактор - Socket-370. Выход в первом квартале 2001 года. 

Ezra - совместная разработка групп Cyrix и Centaur. Первое действительно новое ядро VIA. Первый их процессор с поддержкой SSE, кэш L1 128 Кбайт, кэш L2 128. Предполагается значительно возросшая производительность и тактовая частота. Выход во втором квартале 2001 с тактовой частотой от 750 МГц с потенциалом роста выше 1 ГГц. 

Transmeta

Crusoe - 19 января Transmeta, наконец, подвела итог своей 5 летней деятельности, объявив аппаратно-программный комплекс - процессор Crusoe. Компания решила не конкурировать с Intel и AMD в той области, где те традиционно сильны, позиционируя свой процессор, как лучшее решение для мобильных систем, HPC, и т.д. Для начала процессор выходит в двух вариантах - 333-400 МГц TM3120 и 500-700 МГц TM5600. Для первого объем кэша составляет 96 Кбайт L1, для второго - 125 Кбайт L1 + 256 Кбайт L2. Плавающее энергопотребление составляет от 10-20 мВт до 1-3 Вт, в зависимости от выполняемой работы.

3.3. Современные микропроцессоры

В следующей таблице приведено сравнение характеристик современных микропроцессоров. Таблица составлена по данным, опубликованным на веб-серверах производителей, по состоянию на ноябрь 2001 года. Некоторые данные могут оказаться неполными или не совсем точными.

Процессор

Тактовая частота

FLOP *

Кэш данных

Кэш команд

Kэш-память L2

Частота системной шины

SPECint **

SPECfp **

Ватт ***

Intel Pentium 4

1.3-2 ГГц

2

8 КБ

12 КБ

256 КБ на чипе

400 МГц

664

734

75 Вт

Intel Itanium

733, 800 МГц

4

16 КБ

16 КБ

96 КБ

266 МГц

365

701

116-130 Вт

AMD Athlon XP

1.333-1.6 ГГц

3

64 КБ

64 КБ

256 КБ на чипе

266 МГц

701

634

60-68 Вт

AMD Athlon MP

1.2-1.533 ГГц

3

64 КБ

64 КБ

256 КБ на чипе

266 МГц

609

547

46.1-54.7 Вт

Sun UltraSPARC III

600-900 МГц

2

64 КБ

32 КБ

до 16 МБ внешней, контроллер и теги на чипе

150 МГц

467

482

70 Вт @ 750 МГц

IBM PowerPC 750FX  

0.9-1 ГГц  

1   

32 КБ  

32 КБ  

512 КБ на чипе   

200 МГц  

    

   

5.7 Вт @ 900 МГц   

SandCraft SR71000  

500-800 МГц  

2  

32 КБ   

32 КБ   

512 КБ на чипе  

133 МГц   

    

   

4 Вт @ 600 МГц   

Alpha 21264  

0.5-1 ГГц  

2  

64 КБ  

64 КБ   

до 8 МБ   

200 МГц   

679  

960  

90 Вт @ 750 МГц  

IBM Power 4  

1.1-1.3 ГГц  

2  

32 КБ  

64 КБ   

от 0.5 до 16 МБ  

400 МГц  

814  

1169  

    

HP PA-8700  

650, 750 МГц  

4  

0.75 МБ  

1.5 МБ  

нет  

    

569  

581  

12.5 Вт  

SPARC64 GP  

400-675 МГц  

2  

128 КБ  

128 КБ   

8 МБ внешней  

    

478  

509  

    

·         FLOP = операций с плавающей точкой за такт.

·         ** Лучшие результаты тестов SPECint2000 и SPECfp2000 для однопроцессорных конфигураций. Результаты были взяты с сервера www.spec.org

·         *** Максимальное потребление электроэнергии.

3.3.1. Шинна архітектура обеспечивается на базе шинного контроллера. Контроллер, обеспечивает формирование потоков данных, передаваемых по шине в соответствии со стандартом, и управляющий передачей сигналов по шине, где шина- это Совокупность электрических линий для обмена данными между частями компьютера.  Кроме этого, тип шины определяет и сигналы, которые передаются по этим линиям. В персональном компьютере типы шин определяются материнской платой. Основными характеристиками шин являются разрядность передаваемых данных и скорость передачи данных в Мбайт/с. Наибольший интерес вызывают два типа шин: системный и локальный. Системная шина предназначена для обеспечения передачи данных между периферийными устройствами и центральным процессором, а также оперативной памятью. Существует несколько стандартов организации системной шины для персональных компьютеров. Шина стандарта ISA (Industry standart architecture - промышленная стандартная архитектура) принята в моделях персонального компьютера IBM PC, IBM PC/XT, IBM PC/AT и компьютерах с процессором i80386. Характеризуется 16-разрядными данными и относительно невысокими скоростями обмена данными по шине.

Шина стандарта EISA (Extended Industry Standart Architecture - усовершенствованная промышленная стандартная архитектура) используется в компьютерах с процессорами i80386 и i486. является не отдельным стандартом, а лишь расширением ISA, в связи с чем в нем сохраняется аппаратная совместимость с предыдущими моделями ПК.

Шина стандарта MCA (Micro Channel Architecture - микроканальная архитектура) предложена в 1987 г. фирмой IBM для PS/2. Обеспечивает быстрый обмен данными между отдельными устройствами, в частности с оперативной памятью, однако несовместима с ISA и EISA.

Локальной шиной, как правило, называется шина, непосредственно подключенная к контактам микропроцессора, т.е. шина процессора.

Локальные шины начали использоваться с компьютеров на базе процессоров i486. Локальная шина работает на частоте, равной внешней частоте микропроцессора.

Локальная шина стандарта VLB (VESA Local Bus, где VESA - Video Equipment Standards Assotiation - Ассоциация стандартов видеооборудования) разработана в 1992 г. Иногда эту шину называют VESA. Одним из недостатков шины VLB является невозможность ее использования с процессорами следующего поколения: Pentium, Alpha, Power PC и др. В настоящее время устарела.

Шина стандарта PCI (Peripheral Component Interconnect - взаимосвязь периферийных компонентов) создана в 1992 г. Строго говоря, шина PCI не является локальной, т.к. между ней и шиной процессора имеется специальный, согласующий сигналы блок. Кроме этого, стандарт PCI предусматривает использование вспомогательного контроллера, который берет на себя разделение сигналов процессора и шины и осуществляет разрешение конфликтов. Таким образом, шина PCI является независимой от типа процессора. Частота работы шины тоже не зависит от частоты процессора и составляет 33 МГц. Имеется 64-разрядная версия шины. Шина PCI поддерживает технологию "plug-and-play" (вставь и работай). Широко используется в настоящее время. Во время перехода на шину PCI существовали компьютеры с архитектурой, предусматривающей работу с тремя шинами ISA, VLB и PCI. Такая шина называется VIP (по начальным буквам входящих в нее стандартов).

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ШИН

 

ISA

EISA

VLB

PCI

Год создания

1984

1988

1992

1992

Разрядность тракта данных

8,16

32

32

32

64

Частота шины,  МГц

8

8

33

40

33

33

Максимальная пропускная

способность, Мбайт/с

8

33

133

148

132

264

3.3.2.Архитектура двойной независимой шины

Архитектура построения процессора, при которой данные передаются по двум шинам независимо друг от друга, одновременно и параллельно.

Снимает многие проблемы пропускной способности компьютерных платформ, была разработана фирмой Intel для удовлетворения запросов прикладных программ, а также для обеспечения возможности д

альнейшего развития новых поколений процессоров.

Наличие двух независимых шин дает возможность процессору получать доступ к данным, передающимся по любой из шин одновременно и параллельно, в отличие от последовательного механизма, характерного для систем с одной шиной.

Механизм работы 

  •  Архитектура двойной независимой шины использует две шины: "шину кэш 2-го уровня(L2)(512 KB)" и "системную шину" - от процессора к основной памяти.
  •  Архитектура двойной независимой шины, к примеру, более чем в 3 раза ускоряет работу кэш 2-го уровня процессора Pentium II с тактовой частотой 400 МГц по сравнению с кэш L2 процессора Pentium. С увеличением тактовых частот процессоров Pentium II, возрастет и скорость доступа к кэш L2.
  •  Конвейер системной шины обеспечивает одновременно множество взаимодействий ,увеличивая поток информации в системе и существенно повышая общую производительность.

Использование этих возможностей архитектуры двойной независимой шины позволяет получить трехкратное увеличение пропускной способности по сравнению с процессором, имеющим одну шину

3.3.3.Архитектура “клиент-сервер”

Архитектура программного обеспечения и/или технических средств, при которой выделяются две взаимосвязанные части: клиент и сервер. Клиент обеспечивает взаимодействие с пользователем, формирует запросы к серверу и получает на них ответы.

Сервер обеспечивает хранение основных данных и выполняет задания клиента.

При работе в этой архитектуре обычно используется язык структурированных запросов (SQL).

Иногда под архитектурой “клиент-сервер” понимают архитектуру технических средств, с теми же функциями.

3.3.4.Компоненты материнской платы та архітектурні особливості комп’ютерів.

Сердцем современного компьютера, как это может показаться не странным, является не процессор, как принято считать, а материнская плата. Рассмотрим назначение и различие разъемов, перемычек и микросхем на ней.

3.3.4.1.Інтегрована периферія-chipset.

ChipSet- это набор или одна микросхема, на которую, и возлагается основная нагрузка по обеспечению центрального процессора данными и командами, а также, по управлению перереферией как то видео карты, звуковая система, оперативная память, дисковые накопители и различные порты ввода/вывода. Они содержат в себе контроллеры прерываний прямого доступа к памяти, обычно в одну из микросхем набора входят также часы реального времени с CMOS-памятью и иногда - клавиатурный контроллер. Однако эти блоки могут присутствовать и в виде отдельных чипов. В последних разработках в состав микросхем наборов для интегрированных плат стали включаться и контроллеры внешних устройств. Внешне микросхемы Chipset'а выглядят, как самые большие после процессора, по количество выводов от нескольких десятков до двух сотен. Название набора обычно происходит от маркировки основной микросхемы - i810, i810E, i440BX, I820, VIA Apollo pro 133A, SiS630, UMC491, i82C437VX и т.п. При этом используется только код микросхемы внутри серии: например, полное наименование SiS471 - SiS85C471. Последние разработки используют и собственные имена; в ряде случаев это - фирменное название (INTEL, VIA, Viper) Тип набора в основном определяет функциональные возможности платы: типы поддерживаемых процессоров, структура объем кэша, возможные сочетания типов и объемов модулей памяти, поддержка режимов энергосбережения, возможность программной настройки параметров и т.п. На одном и том же наборе может выпускаться несколько моделей системных плат, от простейших до довольно сложных с интегрированными контроллерами портов, дисков, видео и т.д.

Тип набора в основном определяет функциональные возможности платы: типы поддерживамых процессоров, структура/объем кэша, возможные сочетания типов и объемов модулей памяти, поддержка режимов энергосбережения, возможность программной настройки параметров и т.п. На одном и том же наборе может выпускаться несколько моделей системных плат, от простейших до довольно сложных с интегрированными контроллерами портов, дисков, видео и т.п.

3.3.4.2.Разновидности слотов. Слотом называются разъемы расширения расположенные на материнской плате. Они бывают следующих типов XT-Bus, ISA, EISA, VLB, PCI, AGP, PCMCIA ии MCA XT-Bus - шшинна аарххиттекктуурыы XT - пперрваая вв ссеммеййсттвее IBM PC. ООтнноссительно проста, поддерживает обмен 8-разрядными данными внутри 20-разрядного (1 Мб) адресного пространства (обозначается как "разрядность 8/20"), работает на частоте 4.77 МГц. Совместное использование линий IRQ в общем случае невозможно. Конструктивно оформлена в 62-контактних разъемах.

ISA (Industry Standard Architecture - архитектура промышленного стандарта) - основная шина на компьютерах типа PC AT (другое название - AT-Bus), разрядность - 16/24 (16 Мб), тактовая частота - 8 МГц, предельная пропускная способность - 5.55 Мб/с. Разделение IRQ невозможно(т.е. на каждый слот заведены все каналы IRQ). Конструктив - 62-контактный разъем XT-Bus с прилегающим к нему 36-контактным разъемом расширения.

EISA (Enhanced ISA - расширенная ISA) - функциональное и конструктивное расширение ISA. Внешне разъемы имеют такой же вид, как и ISA, и в них могут вставляться платы ISA, но в глубине разъема находятся дополнительные ряды контактов EISA, а платы EISA имеют более высокую ножевую часть разъема с двумя рядами контактов расположенных в шахматном порядке одни чуть выше, другие чуть ниже. Разрядность - 32/32, работает также на частоте 8 МГц. Предельная пропускная способность - 32 Мб/с. Предусмотрена возможно разделение каналов IRQ и DMA.

VLB (VESA Local Bus - локальная шина стандарта VESA) - 32-разрядное дополнение к шине ISA. Конструктивно представляет собой дополнительный разъем (116-контактный) при разъеме ISA. Разрядность - 32/32, тактовая частота - 25..50 МГц. Электрически выполнена в виде расширения локальной шины процессора - большинство входных и выходных сигналов процессора передаются непосредственно VLB-платам без промежуточной буферизации.

PCI (Peripheral Component Interconnect - соединение внешних компонент) - PCI является дальнейшим шагом в развитие VLB. Разрядность - 32/32 (расширенный вариант - 64/64), тактовая частота - до 33 МГц (PCI 2.1 - до 66 МГц), пропускная способность - до 132 Мб/с (264 Мб/с для 32/32 на 66 МГц и 528 Мб/с для 64/64 на 66 МГц). Сегментов может быть несколько, они соединяются друг с другом посредством мостов (bridge). Сегменты могут объединяться в различные топологии (дерево, звезда и т.п.). Самая популярная шина в настоящее время, используется также на других компьютерах. Разъем похожа на MCA/VLB, но чуть длиннее (124 контакта). 64-разрядный разъем имеет дополнительную 64-контактную секцию с собственным ключом. Все разъемы и карты к ним делятся на поддерживающие уровни сигналов 5 В, 3.3 В и универсальные; первые два типа должны соответствовать друг другу, универсальные карты ставятся в любой разъем. Существует также расширение MediaBus шины PCI, введенное фирмой ASUSTek для подключения звуковых карт- дополнительный разъем находящийся за PCI слотом, содержит сигналы шины ISA.

AGP ( Acselerated Graphic Port - Ускоренный Графический Порт ) - Является дальнейшим развитием PCI нацеленным на ускоренный обмен с графическими акселераторами. Отличия от PCI в физическом расположении слота на материнской плате и его конструкции. Так как AGP слот конструировался для установки в него видео плат, в нем предусмотрена скоростная передача данных в память видео карт, а так как они не нуждаются в двухстороннем скоростном обмене, то и соответственно обратная связь достаточно медленная. Пропускная способность - 528 Мб/с, а с видео карты на системную шину до 132 Мб/с. Существует также новый стандарт AGP Pro. Кратко, суть его отличий от привычного AGP заключается в том, что к обычному разъему AGP по краям добавлены выводы для подключения дополнительных цепей питания 12В и 3.3В. Эти цепи призваны обеспечить увеличенное энергопотребление видео карты.

PCMCIA (Personal Computer Memory Card International Association - ассоциация производителей плат памяти для персональных компьютеров) - внешняя шина компьютеров класса NoteBook. Другое название модуля PCMCIA - PC Card. Предельно проста, разрядность - 16/26 (адресное пространство - 64 Мб), поддерживает автоконфигурацию, возможно подключение и отключение устройств в процессе работы компьютера. Конструктив - миниатюрный 68-контактный разъем. Контакты питания сделаны более длинными, что позволяет вставлять и вынимать карту при включенном питании компьютера.

MCA (Micro Channel Architecture - микроканальная архитектура) - шина компьютеров PS/2 фирмы IBM. Не совместима ни с одной другой, разрядность - 32/32, (базовая - 8/24, остальные - в качестве расширений). Поддерживает Bus Mastering, имеет арбитраж и автоматическую конфигурацию, синхронная (жестко фиксирована длительность цикла обмена), предельная пропускная способность - 40 Мб/с. Конструктив - одно-трехсекционный разъем (такой же, как у VLB). Первая, основная, секция - 8-разрядная (90 контактов), вторая - 16-разрядное расширение (22 контакта), третья - 32-разрядное расширение (52 контакта). В основной секции предусмотрены линии для передачи звуковых сигналов. Дополнительно рядом с одним из разъемов может устанавливаться разъем видеорасширения (20 контактов). EISA и MCA во многом параллельны, появление EISA было обусловлено собственностью IBM на архитектуру MCA.

3.3.4.3. Типы микросхем памяти используются в системных платах.

Из микросхем памяти (RAM - Random Access Memory, память с произвольным доступом) используется два основных типа: статическая (SRAM - Static RAM) и динамическая (DRAM - Dynamic RAM).

Рис. 3.3. Устройство ячейки динамической памяти.

В статической памяти элементы (ячейки) построены на различных вариантах триггеров - схем с двумя устойчивыми состояниями. После записи бита в такую ячейку она может пребывать в этом состоянии столь угодно долго - необходимо только наличие питания. При обращении к микросхеме статической памяти на нее подается полный адрес, который при помощи внутреннего дешифратора преобразуется в сигналы выборки конкретных ячеек. Ячейки статической памяти имеют малое время срабатывания (единицы-десятки наносекунд), однако микросхемы на их основе имеют низкую удельную плотность данных (порядка единиц Мбит на корпус) и высокое энергопотребление. Поэтому статическая память используется в основном в качестве буферной (кэш-память).

В динамической памяти ячейки построены на основе областей с накоплением зарядов, занимающих гораздо меньшую площадь, нежели триггеры, и практически не потребляющих энергии при хранении. При записи бита в такую ячейку в ней формируется электрический заряд, который сохраняется в течение нескольких миллисекунд; для постоянного сохранения заряда ячейки необходимо регенерировать - перезаписывать содержимое для восстановления зарядов. Ячейки микросхем динамической памяти организованы в виде прямоугольной (обычно - квадратной) матрицы; при обращении к микросхеме на ее входы вначале подается адрес строки матрицы, сопровождаемый сигналом RAS (Row Address Strobe - строб адреса строки), затем, через некоторое время - адрес столбца, сопровождаемый сигналом CAS (Column Address Strobe - строб адреса столбца). При каждом обращении к ячейке регенерируют все ячейки выбранной строки, поэтому для полной регенерации матрицы достаточно перебрать адреса строк. Ячейки динамической памяти имеют большее время срабатывания (десятки-сотни наносекунд), но большую удельную плотность (порядка десятков Мбит на корпус) и меньшее энергопотребление. Динамическая память используется в качестве основной.

Обычные виды SRAM и DRAM называют также асинхронными - потому, что установка адреса, подача управляющих сигналов и чтение/запись данных могут выполняться в произвольные моменты времени - необходимо только соблюдение временнЫх соотношений между этими сигналами. В эти временные соотношения включены так называемые охранные интервалы, необходимые для стабилизации сигналов, которые не позволяют достичь теоретически возможного быстродействия памяти. Существуют также синхронные виды памяти, получающие внешний синхросигнал, к импульсам которого жестко привязаны моменты подачи адресов и обмена данными; помимо экономии времени на охранных интервалах, они позволяют более полно использовать внутреннюю конвейеризацию и блочный доступ.

FPM DRAM (Fast Page Mode DRAM - динамическая память с быстрым страничным доступом) активно используется в последние несколько лет. Память со страничным доступом отличается от обычной динамической памяти тем, что после выбора строки матрицы и удержании RAS допускает многократную установку адреса столбца, стробируемого CAS, а также быструю регенерацию по схеме "CAS прежде RAS". Первое позволяет ускорить блочные передачи, когда весь блок данных или его часть находятся внутри одной строки матрицы, называемой в этой системе страницей, а второе - снизить накладные расходы на регенерацию памяти.

EDO (Extended Data Out - расширенное время удержания данных на выходе) фактически представляют собой обычные микросхемы FPM, на выходе которых установлены регистры-защелки данных. При страничном обмене такие микросхемы работают в режиме простого конвейера: удерживают на выходах данных содержимое последней выбранной ячейки, в то время как на их входы уже подается адрес следующей выбираемой ячейки. Это позволяет примерно на 15% по сравнению с FPM ускорить процесс считывания последовательных массивов данных. При случайной адресации такая память ничем не отличается от обычной.

BEDO (Burst EDO - EDO с блочным доступом) - память на основе EDO, работающая не одиночными, а пакетными циклами чтения/записи. Современные процессоры, благодаря внутреннему и внешнему кэшированию команд и данных, обмениваются с основной памятью преимущественно блоками слов максимальной ширины. В случае памяти BEDO отпадает необходимость постоянной подачи последовательных адресов на входы микросхем с соблюдением необходимых временных задержек - достаточно стробировать переход к очередному слову отдельным сигналом.

SDRAM (Synchronous DRAM - синхронная динамическая память) - память с синхронным доступом, работающая быстрее обычной асинхронной (FPM/EDO/BEDO). Помимо синхронного метода доступа, SDRAM использует внутреннее разделение массива памяти на два независимых банка, что позволяет совмещать выборку из одного банка с установкой адреса в другом банке. SDRAM также поддерживает блочный обмен. Основная выгода от использования SDRAM состоит в поддержке последовательного доступа в синхронном режиме, где не требуется дополнительных тактов ожидания. При случайном доступе SDRAM работает практически с той же скоростью, что и FPM/EDO.

PB SRAM (Pipelined Burst SRAM - статическая память с блочным конвейерным доступом) - разновидность синхронных SRAM с внутренней конвейеризацией, за счет которой примерно вдвое повышается скорость обмена блоками данных.

Микросхемы памяти имеют четыре основные характеристики - тип, объем, структуру и время доступа. Тип обозначает статическую или динамическую память, объем показывает общую емкость микросхемы, а структура - количество ячеек памяти и разрядность каждой ячейки. Например, 28/32-выводные DIP-микросхемы SRAM имеют восьмиразрядную структуру (8k*8, 16k*8, 32k*8, 64k*8, 128k*8), и кэш для 486 объемом 256 кб будет состоять из восьми микросхем 32k*8 или четырех микросхем 64k*8 (речь идет об области данных - дополнительные микросхемы для хранения признаков (tag) могут иметь другую структуру). Две микросхемы по 128k*8 поставить уже нельзя, так как нужна 32-разрядная шина данных, что могут дать только четыре параллельных микросхемы. Распространенные PB SRAM в 100-выводных корпусах PQFP имеют 32-разрядную структуру 32k*32 или 64k*32 и используются по две или по четыре в платах для Pentuim.

Аналогично, 30-контактные SIMM имеют 8-разрядную структуру и ставятся с процессорами 286, 386SX и 486SLC по два, а с 386DX, 486DLC и обычными 486 - по четыре. 72-контактные SIMM имеют 32-разрядную структуру и могут ставиться с 486 по одному, а с Pentium и Pentium Pro - по два. 168-контактные DIMM имеют 64-разрядную структуры и ставятся в Pentium и Pentium Pro по одному. Установка модулей памяти или микросхем кэша в количестве больше минимального позволяет некоторым платам ускорить работу с ними, используя принцип расслоения (Interleave - чередование).

Время доступа характеризует скорость работы микросхемы и обычно указывается в наносекундах через тире в конце наименования. На более медленных динамических микросхемах могут указываться только первые цифры (-7 вместо -70, -15 вместо -150), на более быстрых статических "-15" или "-20" обозначают реальное время доступа к ячейке. Часто на микросхемах указывается минимальное из всех возможных времен доступа - например, распространена маркировка 70 нс EDO DRAM, как 50, или 60 нс - как 45, хотя такой цикл достижим только в блочном режиме, а в одиночном режиме микросхема по-прежнему срабатывает за 70 или 60 нс. Аналогичная ситуация имеет место в маркировке PB SRAM: 6 нс вместо 12, и 7 - вместо 15. Микросхемы SDRAM обычно маркируются временем доступа в блочном режиме (10 или 12 нс).

Ниже приведены примеры типовых маркировок микросхем памяти; в обозначении обычно (но не всегда) присутствует объем в килобитах и/или структура (разрядность адреса и данных).

Статические:

61256           - 32k*8 (256 кбит, 32 кб)

62512           - 64k*8 (512 кбит, 64 кб)

32C32           - 32k*32 (1 Мбит, 128 кб)

32C64           - 64k*32 (2 Мбит, 256 кб)

Динамические:

41256           - 256k*1 (256 кбит, 32 кб)

44256, 81C4256  - 256k*4 (1 Мбит, 128 кб)

411000, 81C1000 - 1M*1 (1 Мбит, 128 кб)

441000, 814400  - 1M*4 (4 Мбит, 512 кб)

41C4000         - 4M*4, (16 Мбит, 2 Мб)

MT4C16257       - 256k*16 (4 Мбит, 512 кб)

MT4LC16M4A7     - 16M*8 (128 Мбит, 16 Мб)

MT4LC2M8E7      - 2M*8 (16 Мбит, 2 Мб, EDO)

MT4C16270       - 256k*16 (4 Мбит, 512 кб, EDO)

Микросхемы EDO часто (но далеко не всегда) имеют в обозначении "некруглые" числа: например, 53C400 - обычная DRAM, 53C408 - EDO DRAM.

Таким образом на данный момент существует также несколько типов разъемов для установки оперативной памяти. Такие как: SIMM, DIMM, RIMM

SIMM (Single In line Memory Module - модуль памяти с одним рядом контактов) - модуль памяти, вставляемый в зажимающий разъем, помимо компьютера использующийся также во многих адаптерах, принтерах и прочих устройствах. SIMM имеет контакты с двух сторон модуля, но все они соединены между собой, образуя как бы один ряд контактов. Модули SIMM бывают двух видов (30 и 72 pin) основное различие в количестве контактов на модуле. Но 30 pin овые модули уже достаточно давно сняты с производства и вероятнее всего вы их не встретите.

DIMM (Dual In line Memory Module - модуль памяти с двумя рядами контактов) - модуль памяти, похожий на SIMM, но с раздельными контактами (172 pin то есть 2 x 84pin) контакты расположены с 2х сторон, но гальванически разделены в отличие от SIMM модулей, за счет чего увеличивается разрядность или число банков памяти в модуле. Также применены разъемы другого типа нежели чем для модулей SIMM.

CELP (Card Egde Low Profile - невысокая карта с ножевым разъемом на краю) - модуль внешней кэш-памяти, собранный на микросхемах SRAM (асинхронный) или PB SRAM (синхронный). По внешнему виду похож на 72-контактный SIMM, имеет емкость 256 или 512 кб.

3.3.4.4.Разъемы процессоров

Собственно говоря, процессор как раз то устройство, которое производит все вычисления и управляет всеми контролерами. Ввиду несоответствия интерфейсов памяти и процессора, для совместного взаимодействия им необходим посредник - контроллер памяти. Контроллер памяти в значительной мере определяет скорость обмена с памятью а, значит, и быстродействие всей системы в целом. В настоящее время, такие контролеры выпускаются не в виде отдельных микросхем, а входят в состав чипсета (см. Рис. 3.4.), поэтому, очень важно выбрать "правильный" чипсет. Чем они отличаются друг от друга, или на какие характеристики следует обращать внимание в первую очередь?

Рис. 3.5.Контроллер памяти в современных системах интегрирован в чипсет

Прежде всего - синхронный или асинхронный режим работы. Синхронные чипсеты требуют, чтобы частота памяти совпадала с частой шины. Имея такой чипсет, вы не сможете использовать преимущества процессора с 133 MHz шиной, если у вас установлена память SDRAM PC 100. Асинхронные чипсета выгодно отличаются тем, что позволяют тактировать память "своей" частотой, не обязательно совпадающей с тактовой частотой системной шины. Благодаря этому, они поддерживают практически любые комбинации процессоров и памяти. Однако если тактовые частоты системной шины и памяти не могут быть соотнесены как целые числа, возникают штрафные задержки (см. рис. 3.6), негативно сказывающиеся на производительности.

Другой немаловажный момент - политика открытия страниц и максимально возможное количество одновременно открываемых страниц. Как уже было показано выше, удерживание сигнала RAS позволяет читать ячейки в пределах этой страницы передачей одного лишь адреса столбца, что значительно увеличивает производительность системы. Чем больше страниц удерживается в открытом состоянии, тем выше вероятность того, что очередной запрос попадет в уже открытую страницу и потому обработается значительно быстрее.

Рис. 3.6  Если тактовая частота памяти и тактовая частота системной шины не могут быть соотнесены как целые числа возникают штрафные задержки на их синхронизацию.

Так как же определить какой процессор вы сможете поставить в ту материнскую плату, которую выбрали. На данный момент существует достаточно много типов разъемов для установки процессора такие как Socket 7, Socket 370, Socket FC-PGA, Slot I, Slot A. Среди такого количества несложно и запутаться но не волнуйтесь, сейчас все подробно разберем.

Тип разъемов Socket-ZIF (Zero Input Force- вставляй не прикладывая сил) конструктивно представляет пластиковый разъем с зажимающей защелкой, расположенной сбоку корпуса разъема, предназначенной для предотвращения самопроизвольное выпадения процессора. При установке процессора защелка должна быть максимально поднята вверх.

Разъем Socket 7 - стандартный ZIF (Zero Input Force) - разъёмом с 296 контактами, использующийся всеми процессорами класса Р5 - Intel Pentium, AMD K5 и K6, Cyrix 6x86 и 6x86MX и Centaur Technology IDT-C6.
Разъем Socket 8 - нестандартный ZIF имеет 387 контактов и несовместим с Socket 7, и предназначен для установки в него процессора класса Р6 - Pentium Pro. Так как ядро процессора и кэш были объединены на одном кристалле то и форма его получилась прямоугольной а не квадратной как у Socket 7.
Разъем Socket 370- нестандартный ZIF несовместим ни с Socket 7, ни с Socket 8, предназначен для установки в него более дешевого прототипа P6 Celeron, за исключением последней модели Celeron II, построенной по технологии Coppermine.

Разъем Socket FC-PGA (Flip Chip Pin Grid Array) внешне напоминает Socket 370. В отличии от 370 на FC-PGA заводится два питания 1,5В и 1,6В. Предназначен для установки процессоров произведенных по технологии Copermine.

Тип разъема Slot конструктивно представляет пластиковый разъем с двумя рядами контактов, в него вставляются процессоры с ножевым разъемом. INTEL пошла на такое в связи с тем, что для удешевления стоимости процессора кэш был вынесен с кристалла и стал располагаться на плате процессора которая и имеет ножевой двух сторонний разъем.

Тип разъема Slot I- предназначен для установки в него процессора P6 Pentium II ,Pentium III и процессора P6 Celeron Slot I.

Тип разъема Slot 2- отличается от Slot I по коммерческим причинам, так как в него ставятся более дорогие модели процессоров Xeon, стоимость которых во много раза превышает стоимость процессоров Pentium II и Pentium III.

Тип разъема Slot A- практически тот же самый Slot I только перевернутый наоборот, предназначен для установки процессора Athlon от AMD.

3.3.4.4.Разъемы для подключения внешних устройств. USB (Universal Serial Bus - универсальная последовательная магистраль) Один из современных интерфейсов для подключения внешних устройств. Предусматривает подключение до 127 внешних устройств к одному USB-каналу, принципиально сделан по принципу общей шины, реализации обычно имеют по два канала на контроллер. Обмен по интерфейсу - пакетный, cкорость обмена до 12Мбит/с.

LPT порт- первоначально был предназначен для подключения к нему принтера, но в дальнейшем появился ряд устройств способных работать через LPT порт (сканеры, Zip приводы и т.д.). LPT порт конструктивно представляет из себя параллельный восьми разрядный порт плюс 4 разряда состояния.

Режимы работы параллельного (LPT) порта:

SPP (Standard Parallel Port - стандартный параллельный порт) Осуществляет 8-разрядный вывод данных с синхронизацией по опросу или по прерываниям. Максимальная скорость вывода - около 80 кб/с. Может использоваться для ввода информации по линиям состояния, максимальная скорость ввода - примерно вдвое меньше.

EPP (Enhanced Parallel Port - расширенный параллельный порт) - скоростной двунаправленный вариант интерфейса. Изменено назначение некоторых сигналов, введена возможность адресации нескольких логических устройств и 8-разрядного ввода данных, 16-байтовый аппаратный FIFO-буфер. Максимальная скорость обмена - до 2 Мб/с.

ECP (Enhanced Capability Port - порт с расширенными возможностями) - интеллектуальный вариант EPP. Введена возможность разделения передаваемой информации на команды и данные, поддержка DMA и сжатия передаваемых данных методом RLE (Run-Length Encoding - кодирование повторяющихся серий).

COM порт - последовательный порт. Скорость обмена до 115kбит/с. Возможно подключения лишь одного устройства к порту. В основном используется для подключения манипулятора мышь или модема. Стандартно в материнскую плату встроено два последовательных порта.

PS/2 порты. Практически полный аналог COM порта. Служит для подключения клавиатуры или манипулятора мышь.

3.3.4.5.Разъемы для подключения дисковых устройств

FDD (Floppy Disk Drivers- Накопитель на Гибких Магнитных Дисках) Конструктивно представляет из себя 12х2 контактный игольчатый разъем с возможностью подключения двух дисководов. Устройство подключенное к перевитому шлейфу будет диском A:, к прямому B:. Реализовано одновременное обращение только к одному устройству.

HDD(Hard Disk Drivers- Накопитель на Жестких Магнитных Дисках) Конструктивно может быть выполнен в нескольких вариантах: IDE, SCSI
IDE- Более дешевый и в настоящее время самый распространенный интерфейс. Конструктивно представляет из себя 2х20 контактный игольчатый разъем. Стандартно контролер IDE имеет один такой разъем, к которому можно подключить до 2х дисковых устройств. Стандартно на материнской плате собраны 2а IDE контролера Primary и Secondary. Существуют также несколько протоколов обмена данными: UDMA/33 - 33MБ/сек и UDMA/66 - 66МБ/сек.

Протокол UDMA/66 обладает вдвое большей скоростью передачи данных за счет того, что данные передается по обоим фронтам тактирующего сигнала в отличие от UDMA/33, в следствии чего необходим шлейф в котором бы отсутствовали помехи от 2х параллельно идущих проводников. Для решения этой проблемы применяется 80 жильный шлейф каждый второй проводник которого соединен с общим проводом для уменьшения помех .

SCSI- Более дорогой и в настоящее время менее распространенный интерфейс. Один контролер может обслуживать от 1 до 32 устройств в зависимости от конструкции. Конструктивно различаются два типа SCSI :
Контролер SCSI внешне представляет из себя плату расширения либо он встроен в материнскую плату и тогда мы можем видеть лишь 25х2 игольчатый разъем. Скорость обмена до 20МБ/с.

Контролер UWSCSI внешне тоже представляет из себя плату расширения или встроен в материнскую плату и тогда мы можем видеть 34х2 трапециидальный разъем плюс для поддержки SCSI 25x2 игольчатый разъем. Скорость обмена до 80МБ/с по каналу UWSCSI.

3.4. Архітектура комп’ютерів  з точки зору транслятора.

Трансля́тор — программа (для компьютеров - компьютерная программа), которая допускает в качестве входа программу на исходном языке, а в качестве выхода выдаёт другую версию этой программы, написанную на другом языке, который называется объектным языком. Объектный язык обычно является машинным языком  некоторой вычислительной машины, причём в этом случае программу можно сразу выполнять. Существует довольно условное деление трансляторов на ассемблеры и компиляторы, которые транслируют соответственно языки низкого и высокого уровней.

Таким образом, для определения понятия  трансля́тор неодходимо уяснить:

- компьютерная программа – это текст, написанный на специальном языке программирования. В таком виде программа удобна для понимания (также благодаря комментариям), написания и редактирования человеком. После написания, программа на языке программирования компилируется в вид, пригодный для исполнения компьютером. Современные языки программирования позволяют обходиться без предварительной компиляции программы и переводить её в инструкции машинного кода непосредственно во время исполнения. Это процесс называется интерпретацией и позволяет добиться переносимости программ между различными аппаратными и программными платформами, а также избежать хранения исполняемых файлов.

- машинный язык — набор команд конкретного компьютера  (электронно-вичислительная машины), который интерпретируется на аппаратном уровне или с помощью микропрограмм самой машины;

- язы́к программи́рования — формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например компьютера). Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении компьютерной программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими данными при различных обстоятельствах. Существуют следующие классы языков программирования: языки программирования общего назначения, функциональные, императивные, или процедурные, объектно-ориентированные, языки логического программирования, языки параллельного программирования, сценарные или скриптовые, узкоспециализированные, высокоуровневый язык программирования, компьютерный язык;

 - компьютер — электронно-вичислительная  машина, состоящая из совокупности узлов (агрегатов). Используется для  для проведения вычислений, а также приёма, переработки, хранения и выдачи информации по заранее определённому алгоритму. По назначению компьютеры классифицируются на следующие виды: миникомпьютер, мэйнфрейм, персональный компьютер, рабочая станция, настольный компьютер, ноутбук, нарманный компьютер, сервер, суперкомпьютер;

- алгоритм — это точный набор инструкций, описывающих последовательность действий исполнителя алгоритма для достижения результата при выполнении некоторой задачи. Алгоритмы, как и большинство знаний, тоже имеют свою систематизацию. Свойства алгоритма: детерминированность — определённость. Алгоритм выдает одни и те же результаты при одних и тех же исходных данных; понятность - алгоритм для исполнителя должен включать только те команды, которые входят в его систему команд; конечность — при корректно заданных исходных данных алгоритм должен давать результат за конечное число шагов;

- вычисле́ние — это математическое преобразование, позволяющее преобразовывать входящий поток информации в выходной, с отличной от первого структурой. Но если смотреть с точки зрения теории информации — вычисление это получение из входных данных нового знания. Для проведения вычислений, а также приёма, переработки, хранения и выдачи информации  необходима обработка информации (даных) по заранее определённому алгоритму;

- компиляция — процесс перевода текста программы, написанной на языке программирования, в исполняемый модуль, содержащий машинные команды конкретного процессора. Формат исполняемого модуля зависит от семейства операционной системы, для исполнения в которой предназначен модуль. Наиболее распространенные форматы: MZ (DOS), NE, PE (Windows), ELF (Unix). Для каждого конкретного языка программирования, конкретной операционной системы и конкретного целевого процессора необходим свой компилятор;

- интерпретация, В области информационных технологий— процесс выполнения текста программы без предварительной компиляции, «на лету». В большинстве случаев интерпретация намного медленнее работы уже скомпилированной программы.

3.4.1. Существует довольно условное деление трансляторов на ассемблеры и компиляторы, которые транслируют соответственно языки низкого и высокого уровней.

Ассемблеры (Ассе́мблер (от англ. assemble — собирать) — транслятор с языка ассемблера в команды машинного языка , где под машинным языком понимается набор команд конкретной вычислительной машины (компью́тера), который интерпретируется выполнения текста программы без предварительной компиляции, «на лету».)на аппаратном уровне или с помощью микропрограмм самой машины. Язык ассемблера — язык программирования низкого уровня (близкий к программированию непосредственно в машинных кодах. Как правило, использует особенности конкретного семейства процессоров). Является символьной формой записи команд процессора. Как следствие, каждая модель процессора имеет свой набор команд на языке ассемблера. Обычно на языке ассемблера пишутся программы или участки кода, где предельно важно быстродействие (драйверы) или размер (вирусы, навесные защиты), или оптимальное их соотношение. Большинство современных компиляторов поддерживают ассемблерные вставки в текст программы. Это позволяет писать основную часть программы на языке высокого уровня, а там где важно быстродействие — использовать язык ассемблера. Программа, транслирующая ассемблер-код в машинный код, называется ассемблер. Обычно ассемблер односторонне совместим с предыдущими моделями процессоров того же семейства.

Компиляторы- модуль (или отдельная программа), задачей которого является перевод текста, написанного на одном из языков программирования в машинный код, понятный компьютеру. Компиляторы могут быть оптимизированы под разные процессоры — например, компилятор, оптимизированный под процессоры фирмы Intel, создаёт машинный код, который быстрее всего выполняется на компьютерах с этими процессорами. Машинный код, получаемый компилятором, пригоден для выполнения лишь на тех платформах, для которых он был откомпилирован. Для выполнения откомпилированной программы на других платформах создаются интерпретаторы, которые на лету переводят машинный код для одной платформы в инструкции, подходящие для другой платформы. Например, популярными являются интерпретаторы, позволяющие выполнять программы, откомпилированные для Windows®, на платформе Linux. Целевую платформу компилятора не следует путать с процессором, под который он оптимизирован. Так, компилятор для платформы Windows может быть оптимизирован под процессоры Intel Pentium 4, а может - под AMD Athlon XP, и под любой из этих же процессоров может быть оптимизирован Линукс-компилятор.

Формально любая компьютерная программа может быть представлена как набор инструкций для универсальной машины Тьюринга. (Машина Тьюринга — математическая абстракция, представляющая собой вычислитель, в терминах которого может быть задан любой существующий алгоритм. Данное высказывание основывается на Теореме Тьюринга. Сам вычислитель состоит из двух элементов — односторонней бесконечной ленты, и головки, которая осуществляет чтение и запись символов на ленту, а также может перемещаться вдоль неё. При обсуждении машины Тьюринга выделяют такое понятие, как проблема остановки машины Тьюринга. Проблема формулируется следующим образом: имея таблицу состояний машины Тьюринга, мы не можем с уверенностью сказать — остановит ли данная машина свою работу, или нет. Чёткий ответ на этот вопрос возможен только в двух вырожденных случаях — когда в машине не объявлено ни одного конечного состояния, либо, когда все состояния машины Тьюринга являются конечными.

Системы счисления, перевод чисел из двоичной системы в десятичную и обратно. Поскольку персональный компьютер представляет собой электронное устройство, хранимая и обрабатываемая им информация представлена в двоичной системе счисления, в которой используются лишь два числа - 0 и 1. Для перевода чисел из десятичной системы счисления в двоичную производят последовательное деление десятичного числа на основание системы счисления:

Результат есть комбинация чисел, полученных в остатках, записанная в направлении, обратном делению:

(327)10 -> (101000111)2

В случае десятичных дробей производят последовательное умножение дроби на основание системы счисления:

0,125

*

2

=

0,250

=

0

+

0,250

0,250

*

2

=

0,500

=

0

+

0,500

0,500

*

2

=

1,000

=

1

+

0,000

0,000

*

2

=

0,000

=

0

+

0,000

Результат есть комбинация чисел в целой части произведения:

(0,125)10 (0,001)2

Для перевода чисел из двоичной системы счисления в десятичную выполняют перемножение разрядов преобразуемого числа на основание системы счисления в степени, соответствующей номеру разряда справа, начиная с нуля:

101000111 = 1*28 + 0*27 + 1*26 + 0*25 + 0*24 + 0*23 + 1+22 + 1*21 + 1*20

Результат есть сумма произведений:

(101000111)2 -> (327)10

Аналогично производится перевод дробных чисел, с той лишь разницей, что основание возводится в отрицательную степень:

0,001 = 0,0 + 0*2-1 + 0*2-2 + 1*2-3

Поскольку основной единицей измерения информации является байт (8 бит), то часто применяется восьмеричная система счисления. В программировании удобно использовать два байта (слово), для записи которых удобно использовать шестнадцатиричную систему счисления, в которой цифры больше 9 записываются латинскими буквами: 10 -> A, . . ., 15 -> F. Алгоритмы перевода из этих систем счисления в десятичную и обратно те же, например:

(7143)10 -> (1BE7)16

поскольку


 

А также другие работы, которые могут Вас заинтересовать

34981. Производство и потребности 27 KB
  Потребности человека в самом широком смысле можно определить как состояние нужды неудовлетворенности которое он стремится преодолеть. По своей биологической природе потребности вытекают из взаимодействия живого организма с окружающей средой. Это так называемые физиологические потребности человека потребности в пище одежде жилище и т.
34982. Ресурсы и факторы производства 27.5 KB
  Ресурсы производства – это совокупность различных природных социальных и духовных сил которые могут быть использованы в процессе создания товаров услуг и иных ценностей. Многие природные ресурсы редки а их запасы с каждым днем уменьшаются; 2 материальные – все созданные человеком рукотворные средства производства и предметы труда которые сами являются результатом производства; 3 трудовые – трудоспособное население; 4 финансовые – денежные средства которые общество в состоянии выделить на организацию производства; 5 информационные –...
34983. Крива́я произво́дственных возмо́жностей 24 KB
  Попасть в эту точку можно если увеличить количество используемых ресурсов или улучшить технологию производства например сменить ручной труд на машинный. Тенденции роста альтернативных издержек производства в условиях увеличения производства одного из товаров. Уровень эффективности производства.
34984. Экономическая система 38.5 KB
  Во всех экономических системах для производства требуются экономические ресурсы а результаты хозяйственной деятельности распределяются обмениваются и потребляются. В то же время в экономических системах есть также элементы которые отличают их друг от друга: социальноэкономические отношения; организационноправовые формы хозяйственной деятельности; хозяйственный механизм; система стимулов и мотиваций участников; экономические связи между предприятиями и организациями. ТЭС Отличительные черты: крайне примитивные технологии; преобладание...
34986. Функции рынка 32.5 KB
  Растет цена сигнал к расширению производства: падает цена сигнал к его сокращению. Информационная функция Цена складывающаяся на каждом из рынков содержит богатую информацию необходимую всем участникам хозяйственной экономической деятельности. Ценообразующая функция В результате взаимодействия производителей и потребителей предложения и спроса на товары и услуги на рынке формируется цена. Рыночная цена представляет собой своего рола итог баланс сопоставления затрат производителей и полезности ценности данного блага для...
34987. Структура и инфраструктура рынка 36 KB
  По охвату экономического пространства различают местный рынок города района области; национальный внутренний отдельной республики государства и мировой внешний. По участию в кругообороте выделяют рынок ресурсов и рынок продуктов. В зависимости от определенных видов товаров рынок делится на несколько сфер.
34988. Условия формирования рыночной экономики в России 31.5 KB
  Готовые западные рецепты формирования цивилизованного рынка могут оказаться неэффективными для России. Вместе с тем имеют место общемировые тенденции развития рынка которые должны быть учтены и у нас. Прежде всего необходимо многообразие форм собственности в том числе наличие частной собственности в результате чего создается неограниченное число участников рынка.
34989. Рыночное равновесие. Гибкая работа рыночного механизма 25 KB
  Равновесная цена это цена при которой удается продать все количество товаров изготовленных на продажу то есть величина спроса и величина предложения совпадают. Рыночное равновесие недолговечно оно постоянно нарушается изза изменения спроса или предложения. На изменение условий предложения цена реагирует поиному. Однако увеличение предложения товаров вновь меняет ситуацию на рынке и спрос падает.