68886

Перетворення на площині

Лекция

Информатика, кибернетика и программирование

Представлення графічних зображень здійснюється крапками і лініями. Можливість перетворення крапок і ліній є основою комп’ютерної графіки. При використанні комп’ютерної графіки можна змінювати масштаб зображення, обертати його, зміщувати і трансформувати для поліпшення наочності зображення об’єкту.

Украинкский

2014-09-26

83.5 KB

1 чел.

ЛЕКЦІЯ 6

Перетворення на площині

Представлення графічних зображень здійснюється крапками і лініями.

Можливість перетворення крапок і ліній є основою комп'ютерної графіки. При використанні комп'ютерної графіки можна змінювати масштаб зображення, обертати його, зміщувати і трансформувати для поліпшення наочності зображення об'єкту.

Аффінне перетворення на площині.

У комп'ютерній графіці все, що відноситься до двомірного випадку, позначається символом 2d (2-dimension).

Користуватимемося декартовою системою координат - це зручний спосіб скріплення геометричного об'єкту (т.м) - з числами X, Y - її координатами, які дозволяють кількісно описувати геометричні фігури.

y                                                           y             y*        x*

         M (x, y)         

                    M* (x*, y*)                                     M (x, y)

                         x                                                              x

                                                                                               

У декартовій системі координат перетворення можна розглядати двояко:

         -змінюється положення крапки, а система координат та ж;

         -зберігається крапка, а змінюється координатна система.

Надалі розглядатимемо перший випадок: у заданій системі прямокутних координат перетвориться точка площини.

 Перетворені координати описуються співвідношеннями:

          X* = ax + by + ;

          Y* = cx + dy + ;    загальне аффінне перетворення,

      де a, b, c, d, , довільні числа.

Для переміщення крапки на площині необхідно описати закон зміни її координат.

Існує декілька окремих випадків перетворень, використовуючи які досягається необхідні переміщення на площині. Такими перетвореннями є:

       -паралельне перенесення;

       -обертання;

        -зеркальне відображення;

        - розтягування або стискування.

Вибір цих випадків визначається двома обставинами:

  -кожне з приведених перетворень має простий і наочний геометричний сенс;

  -будь-яке перетворення на площині можна представити як послідовне виконання (суперпозицію) простих перетворень: паралельне перенесення, обертання, розтягування і віддзеркалення.

1) Паралельне перенесення.

       Y                                                     y  

                                M*                                              M*

                                                                   M   

               

                      M                                                         O*  

                                   X                        O                            X

Переводить крапку С з координатами X і Y в точку М* з координатами X* і Y*.

     X* = x + ;

     Y* = y + ;

Приклад: переміщення прямої на площині

2). Дзеркальне віддзеркалення.

     y                                                                 y

                    M                              M*               M

                          x                                                              x

                    M*

       x* = +x;                                               x* = –x;

       y = –y;                                                 y* = y;

  щодо осі абсцис           щодо осі ординат

3) Розтягування (стискування)

     y                                                        y                             

                    M                                                     M*              x* = a * x;

                                                                                                  y* = d * y;

             M*                                                  M

                                 x                                                        x

                                

Розтягування або стискування залежить від значень а і d.

                M

                      M*

                                 x

      O

Якщо a>1 і d<1, то прямокутник розтягується по Х і стискується

  по Y.

Якщо a>1 і d>1, то прямокутник розтягується по X і Y.

Для ефективного використання цих відомих формул в комп'ютерній графіці  зручніше користуватися матричним записом:

      -значення координат точки М можна розглядати як                                                                               

елементи матриці [x, y] - вектор-рядок або        x   – вектор-стовпець.

                                                                               y

      -так розтягування:

       a   0      x        x*                x* = a * x;

       0   d      y   =   y*                y* = d * y;

              віддзеркалення:

    x      1   0                               x* = x;

    y      0  -1     вісь абсцис      y* = –y;

    x      -1  0                               x* = –x;

    y       0  1      вісь ординат     y* = y;

4) Обертання                                                         

Перед отриманням матриці обертання розглянемо перетворення одиничного квадрата .

 y

                                            0   0    – т. А

 D            C                       1    0    – т. В

                                            1   1    – т. С

                                            0   1    – т. D

 A            B             x

Застосування загального матричного перетворення  до одиничного квадрата приводить до наступного результату:

a   b    

c  d

0  0                     0      0                A*

1  0    a  b           a       b                B*

1  1    c  d    =   a+c  b+d              C*

         0  1                     c       d                D*

Результати:

-початок координат не піддається перетворенню; A=a*=[0 0]

-координата В* визначається першим рядком загальної матриці перетворення;

-координата D* визначається другим рядком загальною матрицею перетворення.

Таким чином, якщо координати точка В* і точка D* відомі, то загальна матриця перетворення визначена.

Розглянемо обертання одиничного квадрата навколо початку координат. Обертання проти годинникової стрілки береться за позитивне.

               y

                                                 BB* ;                 x* = 1 * cos

                    C*                                                      y* = 1 * sin

                                                   D – D* ;               x* = -1 * sin

D*                                     C                                    y* = 1 *  cos

                                   B*

                          

                          

               A  A*              B               x

Загальну матрицю обертання можна записати:

              

   x  y     cos   sin                           x* = x * cos – y * sin;

             -sin  cos                            y* = x * sin + y * cos;

Таким чином, отримали:

обертання(rotation)

x         cos    -sin                          x* = x * cos – y * sin;                 

        y         sin       cos                        y* = x * sin + y * cos;

- розтягування (dilatation)

          x      a  0                          x* =a*x; 

          y      0  d                          y*= d*y;

віддзеркалення(reflection)

          x      1   0                        x* =x;              по осі абсцис

          y      0  -1                        y* = -y;

перенесення(translation);            x* = x +  

                                                    y* = y +

Кожне з приведених перетворень координат можна так само описати формулами:

    x* = ax + by + ;

    y* = cx + dy + ;  – загальні аффінні перетворення;

–при a=d=1 и b=c=0 – отримуємо перенесення;

–при a=d=cos и –b=c=sin, ==0 – обертання;

–при a=1, d=–1, c=b==віддзеркалення;

–при b=c==розтягування (стискування);

У матричному описі основних перетворень відсутня операція паралельного перенесення, тобто за допомогою матриці описані:

        x* = ax + by;

        y* = cx + dy; – відсутні.

 і  , а зміна координати по X залежить від трьох параметрів                     

a,b, і по Y залежить від трьох параметрів с, d і .

Значить, щоб охопити матричним підходом чотири прості перетворення, необхідно перейти до опису довільної крапки не парою чисел (x,y), а трійкою чисел [x,y,1] і [x*,y*,1]

Матриця перетворення після цього стає матрицею розміру 2*3

a  b  

c  d    ,

де  і  викликає зсув x* і y* відносно x і у.

Оскільки матриця 2*3 не є квадратною, то вона не має зворотної матриці.

Тому її доповнюють до квадратної, розміру 3*3.

         a  b  

         c  d      – третя компонента векторів положення крапок не                 

0  0  1               змінює.

              

     Використовуючи цю матрицю

          x        a  b          x*

          y        c  d     =  y*

          1        0  0  1       1

отримуємо перетворений вектор [x*, y*, 1].

У загальному випадку [X, Y, H].

Перетворення було виконане так, що

           [X, Y, H] = [x*, y*, 1]

Перетворення, що має місце в тривимірному просторі, в нашому випадку обмежено площиною H=1.

Пряма OМ* перетинає площину H=1 в точці M*(x*,y*,1), яка однозначно визначає точку M(x, у) координатної площини XY.

Представлення двомірного вектора тривимірним або в загальному випадку n-вимірного вектора (n+1) -вимірним називають однорідним координатним відтворенням.

У однорідних координатах запис буде у вигляді:

                                 a  c  0

[x, y, H]=[x, y, 1] *   b  d  0

                                               1   ,

де x = x*, y = y*, H = 1.

У загальному випадку H не дорівнює 1 і перетворені звичайні координати виходять за рахунок нормалізації однорідних координат, тобто

                 X* = x/H;  Y* = y/H.

Основна матриця перетворення розміру для однорідних двомірних координат має вигляд:

a  b  

c  d  

m  n  s

І може бути розділена на чотири частини

a, b, c, d – здійснює зміну масштабу, зрушення і обертання;

 і виконує зсув;

m і nотримання проекції;

sпроводить повну зміну масштабу.

Оскільки при H, яке не дорівнює, ми отримуємо зображення в тривимірному просторі, то для простоти обчислень в 2d використовуваний H=1 і матрицю узагальнену на чотири перетворення:

x*      x        a  b                   x* = ax + by + ;

y*  =  y   *    c  d                  y* = cx + dy + ;

1        1        0  0  1                         1 = 1.

Для того, щоб реалізувати те або інше переміщення по заданих геометричних характеристиках, треба знайти елементи відповідної матриці, використовується матриці:

-обертання (rotation):

       cos  -sin  0                               cos   sin    0

       sin   cos  0        зворотна       -sin  cos   0

        0        0      1                                   0       0       1

розтягування (dilatation):

    a  0  0                                 1/a  0    0                x* = ax;

    0  d  0           зворотна        0  1/d  0                y* = dy;

    0  0  1                                   0   0   1

 

віддзеркалення (reflection):

     1  0  0                         1   0  0                           x* = x;

     0 –1 0      зворотна    0 –1  0                          y* = -y;

     0  0  1                          0  0  1

перенесення (translation):

     1  0                           1  0  -                          x* = x + ;

     0  1       зворотна     0  1 -                          y* = y + .

     0  0  1                          0  0  1

 

Двомірне обертання навколо довільної крапки.

Вище було розглянуто обертання зображення біля початок координат.

Однорідні координати забезпечують поворот зображення навколо крапок, відмінних від початку координат.

У загальному випадку алгоритм обертання навколо довільної крапки наступний:

     -перенос центру обертання в початок координат;

     -поворот відносно початку координат;

     -перенос точки обертання в початкове положення.

Приклад: побудувати матрицю перетворення при повороті на кут  j навколо точки M(m,n), не співпадаючої з початком координат.

           Y

                        

                       M

                                         x

1) Перенесемо площину на вектор M(-m, -n) для поєднання точки повороту з початком координат:

                   1  0  -m

         T_=    0  1  -n

                   0  0   1

2) Поворот на кут :

            cos  -sin  0

     R=  sin   cos  0

              0        0      1

3).Перенесем площину на вектор M(m, n) для обертання точки повороту в початок координат:

             1  0  m

      T=   0  1  n

             0  0  1

Результуюча матриця:

                            1  0  m         cos  -sin  0

M=T * R * T_=    0  1  n     *   sin    cos 0    =  

                            0  0  1            0         0     1

         

      cos  -sin  m         1  0  -m         cos  -sin   -mcos + nsin + m

 =   sin    cos  n     *    0  1  -n   =    sin    cos  -msin – ncos + n    

        0         0      1          0  0   1            0         0                    1                    

    x*       x

    y*   =  y   *  M

    1         1        

                   T * R –T_

 X* = xcos – ysin – mcos + nsin + m;

 Y* = xsin + ycos – msin – ncos + n;

Приклад: побудувати матрицю перетворення при розтягуванні уздовж координатних осей з коефіцієнтами а і d.

                     1  0  -m

 1).    T_ =    0  1  -n    

                     0  0  1       

 

                     a  0  0

 2).    D =      0  d  0

                     0  0  1      

                   1  0  m

 3).    T =    0  1  n

                   0  0  1        

                1  0  m         -a  0  0          1  0  -m

      M=     0  1  n    *     0  d  0     *    0  1  -n    ;

                0  0  1           0  0  1          0  0  1          

                   a   0   -am + m

          M=   0   d   -dn + n

                   0   0         1


 

А также другие работы, которые могут Вас заинтересовать

33505. Поняття та ознаки покарання за кримінальним законом України 32 KB
  50 КК покарання є заходом примусу що застосовується від імені держави за вироком суду до особи визнаної винною у вчиненні злочину і полягає в передбаченому законом обмеженні прав і свобод засудженого. І першою важливою ознакою покарання що визначає його соціальний зміст с визнання покарання заходом державного примусу що застосовується до осіб які вчинили злочинне посягання. Покарання примушує особу до законослухняної поведінки.
33506. Поняття, предмет кримінального права України 31.5 KB
  Кримінальне право як самостійна окрема галузь права має низку ознак як загальних для всіх галузей права так і специфічних тільки для неї. Норми кримінального права це узагальнені правила що охоплюють безліч відповідних життєвих ситуацій індивідуальних випадків. Таким чином кримінальне право як галузь права це система сукупність юридичних норм а по суті законів прийнятих Верховною Радою України що встановлюють які суспільна небезпечні діяння є злочинами і які покарання підлягають застосуванню до осіб що їх вчинили.
33507. Призначення покарання за сукупністю вироків 31 KB
  71 сукупність вироків має місце там де засуджений після постановлення вироку але до повного відбуття покарання вчинив повий злочин. Таким чином при сукупності вироків: а постановлений вирок яким особа засуджена до певної міри покарання; б це покарання ще цілком не відбуте засудженим; в новий злочин вчинений після постановлення вироку але до повного відбуття покарання. 71 якщо засуджений після постановлення вироку але до повного відбуття покарання вчинив новий злочин суд до покарання призначеного за новим вироком повністю або...
33509. Один день Ивана Денисовича 13.61 KB
  Рассказывается об одном дне из жизни заключённого русского крестьянина и солдата Ивана Денисовича Шухова в январе 1951 года. Один день Ивана Денисовича Солженицына привлекает художественным исследованием характера Ивана Шухова не через какоето исключительное событие лагерной жизни побег поединок со следователем смерть а через описание одного дня от подъема до отбоя. Давайте вглядимся в тот мир вещей что сложился вокруг Ивана Денисовича: белая тряпочка чтоб рот на морозе прикрывать ботинки валенки вязанка шапка ложка...
33510. Поэты советского времени 14.47 KB
  Маяковский смог писать на эти же темы но так что бы выделиться из толпы. Маяковский выдающийся поэт футурист в каждом хлёстком слове бессмертных произведений которого бескомпромиссность и убеждённость трагедия и сарказм. одился Владимир Маяковский 7 июля 1893 года в небольшом грузинском посёлке в семье лесничего. Маяковский ушёл из жизни в возрасте 37 лет выстрелив себе в сердце из револьвера.
33511. Лирика периода Великой Отечественной войны (основные темы, художественные особенности) 16.05 KB
  Жди меня и я вернусь Если бы нас своим могуществом. Жди меня и я вернусь Всем смертям назло стихотворение К. Феномен Жди меня вырезаемого перепечатываемого и переписываемого посылаемого с фронта домой и из тыла на фронт феномен стихотворения написанного в августа 1941 на чужой даче в Переделкино адресованного вполне конкретной земной но в эту минуту далекой женщине выходит за рамки поэзии. Жди меня молитва атеиста заговариванье судьбы хрупкий мост между жизнью и смертью и оно же опора этого моста.
33512. Абрамов. Деревенская тематика 15.05 KB
  В повести “Алька†проблема выбора героем верного пути своего места в жизни. Алька находится в поисках своего “яâ€. Алька хочет показать себя зачастую преувеличивая истинные значения. Алька решает остаться в деревне но приехав в город за вещами теряет решительность.
33513. Анализ поэмы 13.68 KB
  Он открыл новый язык новую реальность нового героя и новый слой в словесности брежневской эпохи. Как понятно уже из заглавия книги цель путешествия героя Петушки подмосковная станция где его ждет возлюбленная. Не случайно в композиционном центре поэмы в ОреховеЗуеве описывается сон героя в котором победоносная революция овладевающая всеми винными магазинами района погибает оттого что на нее решительно никто не обращает ни малейшею внимания. Сочетание ироничности и трагичности маргинальное и интеллектуальности в фигуре главного...