68888

Перетворення в просторі

Лекция

Информатика, кибернетика и программирование

Будь-яке аффінне перетворення в тривимірному просторі може бути представлене у вигляді суперпозиції обертань, розтягувань, віддзеркалень і перенесень. Тому цілком доречно спочатку детально описати матриці саме цих перетворень (ясно, що в даному випадку порядок матриць повинен бути рівний чотирьом).

Украинкский

2014-09-26

37 KB

0 чел.

ЛЕКЦІЯ 8

Перетворення в просторі.

У тривимірному випадку (3d) розглянемо однорідні координати.

Поступаючи аналогічно тому, як це було зроблено в розмірності два, замінимо координатну трійку (х, у, z), задаючи крапку в просторі, на четвірку чисел (х, у, z, 1).

Кожна точка простору (окрім початкової точки O) може бути задана четвіркою одночасно не рівних нулю чисел; ця четвірка чисел визначена однозначно з точністю до загального множника.

Запропонований перехід до нового способу завдання крапок дає можливість скористатися матричним записом і в складніших, тривимірних завданнях.

Будь-яке аффінне перетворення в тривимірному просторі може бути представлене у вигляді суперпозиції обертань, розтягувань, віддзеркалень і перенесень. Тому цілком доречно спочатку детально описати матриці саме цих перетворень (ясно, що в даному випадку порядок матриць повинен бути рівний чотирьом).

Матриці обертання в просторі.

Матриця обертання навколо осі  абсцис на кут :

           1       0                0            0

           0   Cos()    Sin()     0

 [Rх]= 0  -Sin()    Cos()    0

           0        0                 0          1

Матриця обертання навколо осі ординат на  кут :

         Cos()       0           -Sin()    0

             0               1               0             0

 [Ry]=Sin()       0            Cos()    0       

             0               0              0              1

Матриця обертання навколо осі аплікат на кут : 

         Cos()     Sin()     0        0

         -Sin()    Cos()     0       0

 [Ry]=  0                0              1        0    

            0                0              0        1

Матриця розтягування (стискування):

де а > 0 - коефіцієнт розтягування (стискування) уздовж осі абсцис;                                                               

b > 0 - коефіцієнт розтягування (стискування) уздовж осі ординат;

з > 0 - коефіцієнт розтягування (стискування) уздовж осі аплікат.

          a    0    0    0

          0    b    0    0

[D] =  0    0     c    0

          0    0     0    1

Матриці віддзеркалення.

Матриця віддзеркалення щодо площини  ху:

           1    0    0    0

           0    1    0    0

[Mz]=  0    0   -1    0

           0    0    0    1

Матриця віддзеркалення щодо площини  yz:

           -1    0     0      0

            0    1     0      0

[Mx]=   0    0     1      0

            0    0      0      1

Матриця віддзеркалення щодо площини zx:

            1    0     0      0

            0   -1     0      0

[My]=   0    0     1      0

            0    0      0      1

Матриця перенесення (тут (l,m,n) - вектор перенесення):

            1    0    0   0

            0    1    0   0

[T]=      0    0    1   0

             l    m    n   1

Зауваження. Як і в двовимірному випадку, всі виписані матриці невирожденні.

Приведемо   важливий приклад побудови матриці складного перетворення по його геометричному опису.

Приклад 1. Побудувати матрицю обертання на кут  навколо прямою L, що проходить через крапку А(а, b, с) і що має направляючий вектор (I, т, п) .можно вважати, що направляючий вектор прямої є одиничним:

  2          2         2 

 L    +M     + N  =1.

Платонові тіла

Правильними многогранниками (Платоновими тілами) називаються такі опуклі многогранники, всі грані яких суть правильні багатокутники і всі багатогранні кути при вершинах рівні між собою.

Існує рівно 5 правильних многогранників (це довів Евклід): правильний тетраедр, гексаедр (куб), октаедр, додекаедр і ікосаедр. Їх основні характеристики приведені в наступній таблиці.

Назва многогранника

Число граней - Г

Число ребер - Р

Число вершин - В

Тетраедр

4

6

4

Гексаедр

6

12

8

Октаедр

8

12

6

Додекаедр

12

30

20

Икосаедр

20

30

12

Неважко відмітити, що в кожному з п'яти випадків числа Г, Р і В зв'язані рівністю Ейлера

Г + В = Р + 2.

Правильні многогранники володіють багатьма цікавими властивостями. Тут ми торкнемося тільки тих властивостей, які можна застосувати для побудови цих многогранників.

Для повного опису правильного многогранника унаслідок його опуклості досить вказати спосіб відшукання всіх його вершин.

Операції побудови перших трьох Платонових тіл є особливо простими.

Куб (гексаедр) будується зовсім нескладно.

Використовуючи куб, можна побудувати тетраедр і октаедр.

Для побудови тетраедра досить провести діагоналі протилежних граней куба, що схрещуються .

Тим самим вершинами тетраедра є будь-які 4 вершини куба, попарно не суміжні ні з одним з його ребер.

Для побудови октаедра скористаємося наступною властивістю подвійності: вершини октаедра суть центри (тяжкість) граней куба

Координати вершин октаедра по координатах вершин куба легко обчислюються (кожна координата вершини октаедра є середньою арифметичною однойменних координат чотирьох вершин грані куба, що містить її).

Додекаедр і ікосаедр також можна побудувати за допомогою куба.


 

А также другие работы, которые могут Вас заинтересовать

19218. Поверхностная ионизация. Формула Саха-Ленгмюра. Температурная зависимость плотности тока положительной ионизации 217 KB
  Лекция № 14. Поверхностная ионизация. Формула СахаЛенгмюра. Температурная зависимость плотности тока положительной ионизации. Термодинамичсекий вывод формулы СахаЛенгмюра. Термодинамичсекий вывод формулы СахаЛенгмюра. Отрицательная поверхностная ионизация. XIV...
19219. Ионное распыление. Диссипация энергии атомных частиц при взаимодействии с твердым телом 288.5 KB
  Лекция № 15. Ионное распыление. Диссипация энергии атомных частиц при взаимодействии с твердым телом. Торможение быстрых частиц в твердом теле. Эмиссия атомных частиц. XV. ИОННОЕ распыление 15.1. Характеристики ионного распыления. Явление распыления твердого ...
19220. ИОНИЗАЦИЯ И ВОЗБУЖДЕНИЕ ЧАСТИЦ В ГАЗЕ 163 KB
  ИОНИЗАЦИЯ И ВОЗБУЖДЕНИЕ ЧАСТИЦ В ГАЗЕ Плазму как среду состоящую из заряженных частиц характеризует степень ионизации или соотношение между количеством заряженных и нейтральных частиц: концентрация электронов конц...
19221. ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ В ГАЗЕ 101.5 KB
  Лекция 2 ТЕРМОДИНАМИЧЕСКОЕ РАВНОВЕСИЕ В ГАЗЕ Одним из известных подходов к описанию плазмы является ее сопоставление с термодинамической системой. При этом состояние плазмы характеризуется такими величинами как температура энтропия и т.д. В термодинамик...
19222. ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ В ГАЗЕ 112.5 KB
  Движение заряженных частиц в газе Ввиду рассмотрения тока в слабоионизованном газе или в низкотемпературной плазме требуется определить основные величины связанные с подвижностью электронов и ионов. Существует ряд экспериментов в которых были найдены значен...
19223. ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗЕ 122 KB
  ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗЕ Одной из первых теорий газовых разрядов явилась теория Таунсенда. Данный вид разряда названный его именем таунсендовский имеет очень слабый ток I=1010105 А и практически не имеет видимого свечения темновой разряд. При увеличении си...
19224. Создание базы данных, состоящей из двух таблиц 187.03 KB
  Оставим Режим таблицы и щелкним по кнопке ОК. Появится пустая таблица, поля которой не определены и не имеют названия. Тип поля будет выбран автоматически в зависимости от введенной информации.
19225. ТЛЕЮЩИЙ РАЗРЯД 87.5 KB
  ТЛЕЮЩИЙ РАЗРЯД Тлеющий разряд имеет свои принципиальные особенности по сравнению с другими видами газовых разрядов. Ввиду этого рассмотрим сравнительную вольтамперную характеристику основных газовых разрядов рис.1. Для получения данной экспериментально
19226. ПОЛОЖИТЕЛЬНЫЙ СТОЛБ ТЛЕЮЩЕГО РАЗРЯДА 111.5 KB
  Положительный столб тлеющего разрядА Тлеющий разряд открытый еще в XIX веке стал детально исследоваться с появлением основных соотношений физики плазмы для различных процессов свойственных газовым разрядам. К наиболее важным областям разряда наряду с катодной обл