68888

Перетворення в просторі

Лекция

Информатика, кибернетика и программирование

Будь-яке аффінне перетворення в тривимірному просторі може бути представлене у вигляді суперпозиції обертань, розтягувань, віддзеркалень і перенесень. Тому цілком доречно спочатку детально описати матриці саме цих перетворень (ясно, що в даному випадку порядок матриць повинен бути рівний чотирьом).

Украинкский

2014-09-26

37 KB

0 чел.

ЛЕКЦІЯ 8

Перетворення в просторі.

У тривимірному випадку (3d) розглянемо однорідні координати.

Поступаючи аналогічно тому, як це було зроблено в розмірності два, замінимо координатну трійку (х, у, z), задаючи крапку в просторі, на четвірку чисел (х, у, z, 1).

Кожна точка простору (окрім початкової точки O) може бути задана четвіркою одночасно не рівних нулю чисел; ця четвірка чисел визначена однозначно з точністю до загального множника.

Запропонований перехід до нового способу завдання крапок дає можливість скористатися матричним записом і в складніших, тривимірних завданнях.

Будь-яке аффінне перетворення в тривимірному просторі може бути представлене у вигляді суперпозиції обертань, розтягувань, віддзеркалень і перенесень. Тому цілком доречно спочатку детально описати матриці саме цих перетворень (ясно, що в даному випадку порядок матриць повинен бути рівний чотирьом).

Матриці обертання в просторі.

Матриця обертання навколо осі  абсцис на кут :

           1       0                0            0

           0   Cos()    Sin()     0

 [Rх]= 0  -Sin()    Cos()    0

           0        0                 0          1

Матриця обертання навколо осі ординат на  кут :

         Cos()       0           -Sin()    0

             0               1               0             0

 [Ry]=Sin()       0            Cos()    0       

             0               0              0              1

Матриця обертання навколо осі аплікат на кут : 

         Cos()     Sin()     0        0

         -Sin()    Cos()     0       0

 [Ry]=  0                0              1        0    

            0                0              0        1

Матриця розтягування (стискування):

де а > 0 - коефіцієнт розтягування (стискування) уздовж осі абсцис;                                                               

b > 0 - коефіцієнт розтягування (стискування) уздовж осі ординат;

з > 0 - коефіцієнт розтягування (стискування) уздовж осі аплікат.

          a    0    0    0

          0    b    0    0

[D] =  0    0     c    0

          0    0     0    1

Матриці віддзеркалення.

Матриця віддзеркалення щодо площини  ху:

           1    0    0    0

           0    1    0    0

[Mz]=  0    0   -1    0

           0    0    0    1

Матриця віддзеркалення щодо площини  yz:

           -1    0     0      0

            0    1     0      0

[Mx]=   0    0     1      0

            0    0      0      1

Матриця віддзеркалення щодо площини zx:

            1    0     0      0

            0   -1     0      0

[My]=   0    0     1      0

            0    0      0      1

Матриця перенесення (тут (l,m,n) - вектор перенесення):

            1    0    0   0

            0    1    0   0

[T]=      0    0    1   0

             l    m    n   1

Зауваження. Як і в двовимірному випадку, всі виписані матриці невирожденні.

Приведемо   важливий приклад побудови матриці складного перетворення по його геометричному опису.

Приклад 1. Побудувати матрицю обертання на кут  навколо прямою L, що проходить через крапку А(а, b, с) і що має направляючий вектор (I, т, п) .можно вважати, що направляючий вектор прямої є одиничним:

  2          2         2 

 L    +M     + N  =1.

Платонові тіла

Правильними многогранниками (Платоновими тілами) називаються такі опуклі многогранники, всі грані яких суть правильні багатокутники і всі багатогранні кути при вершинах рівні між собою.

Існує рівно 5 правильних многогранників (це довів Евклід): правильний тетраедр, гексаедр (куб), октаедр, додекаедр і ікосаедр. Їх основні характеристики приведені в наступній таблиці.

Назва многогранника

Число граней - Г

Число ребер - Р

Число вершин - В

Тетраедр

4

6

4

Гексаедр

6

12

8

Октаедр

8

12

6

Додекаедр

12

30

20

Икосаедр

20

30

12

Неважко відмітити, що в кожному з п'яти випадків числа Г, Р і В зв'язані рівністю Ейлера

Г + В = Р + 2.

Правильні многогранники володіють багатьма цікавими властивостями. Тут ми торкнемося тільки тих властивостей, які можна застосувати для побудови цих многогранників.

Для повного опису правильного многогранника унаслідок його опуклості досить вказати спосіб відшукання всіх його вершин.

Операції побудови перших трьох Платонових тіл є особливо простими.

Куб (гексаедр) будується зовсім нескладно.

Використовуючи куб, можна побудувати тетраедр і октаедр.

Для побудови тетраедра досить провести діагоналі протилежних граней куба, що схрещуються .

Тим самим вершинами тетраедра є будь-які 4 вершини куба, попарно не суміжні ні з одним з його ребер.

Для побудови октаедра скористаємося наступною властивістю подвійності: вершини октаедра суть центри (тяжкість) граней куба

Координати вершин октаедра по координатах вершин куба легко обчислюються (кожна координата вершини октаедра є середньою арифметичною однойменних координат чотирьох вершин грані куба, що містить її).

Додекаедр і ікосаедр також можна побудувати за допомогою куба.


 

А также другие работы, которые могут Вас заинтересовать

17847. КОМПЕТЕНЦИЯ МЕСТНЫХ ОРГАНОВ ВЛАСТИ В ОБЛАСТИ ФИНАНСОВ 86.5 KB
  Тема 13. КОМПЕТЕНЦИЯ МЕСТНЫХ ОРГАНОВ ВЛАСТИ В ОБЛАСТИ ФИНАНСОВ План 1. Составление утверждение и выполнение местного бюджета 2. Бюджетный процесс 3. Образование внебюджетных целевых резервных и валютных фондов 4. Установление местных налогов и сборов Под ко...
17848. МЕСТНЫЕ ФИНАНСОВЫЕ ОРГАНЫ И ИХ ФУНКЦИИ 39 KB
  Тема 14. МЕСТНЫЕ ФИНАНСОВЫЕ ОРГАНЫ И ИХ ФУНКЦИИ План 1. Виды местных финансовых органов 2. Местные финансовые органы в зарубежных странах 1. Виды местных финансовых органов Управление местными финансами осуществляется местными представительными и исполнительн...
17849. ОРГАНИЗАЦИЯ КАССОВОГО ИСПОЛНЕНИЯ МЕСТНЫХ БЮДЖЕТОВ, КОНТРОЛЯ И АУДИТА В МЕСТНЫХ ОРГАНАХ ВЛАСТИ 67 KB
  Тема 15. ОРГАНИЗАЦИЯ КАССОВОГО ИСПОЛНЕНИЯ МЕСТНЫХ БЮДЖЕТОВ КОНТРОЛЯ И АУДИТА В МЕСТНЫХ ОРГАНАХ ВЛАСТИ План 1. Понятие и системы кассового исполнения местных бюджетов 2. Оборотная кассовая наличность 3. Кассовое исполнение местных бюджетов в зарубежных странах ...
17850. Совершенная конкуренция 7.08 MB
  Задача 4 Тема Совершенная конкуренция Исходные данные: Год рождения студента ГР = 1980 Месяц рождения студента МР = 4 День рождения студента ДР = 21 На рынке совершенной конкуренции отраслевой спро
17851. Монополия. Задача 1.98 MB
  Задача 5 Тема: Монополия Исходные данные: Год рождения студента ГР = 1999 Месяц рождения студента МР = 5 День рождения студента ДР = 23 Рыночная функция спроса имеет следующий вид: QD = ГР/3 – 05×МР×P = 666 – 25Р Фу
17852. Потребительский выбор 1.1 MB
  Задача 1 Тема Потребительский выбор Исходные данные: Год рождения студента: ГР = 1985 Месяц рождения студента: МР = 1 День рождения студента: ДР = 3 Функция полезности потребителя: TU = ГР × А × В =1985АВ Доход потребителя: I = ГР = 1985 Цена блага А: PА = 5 × ДР = ...
17853. Производство экономических благ 1.11 MB
  Задача 2 Тема Производство экономических благ Исходные данные: Год рождения студента ГР = 1996 Месяц рождения студента МР = 2 День рождения студентаДР = 25 Производстве
17854. Спрос и предложение. Рыночное равновесие 3.54 MB
  Задача 3 Тема: Спрос и предложение. Рыночное равновесие Исходные данные: Год рождения студента ГР = 1996 Месяц рождения студента МР = 3 День рождения студента ...
17855. Олигополия 1023 KB
  Задача 6 Тема: Олигополия Исходные данные: Год рождения студентаГР = 2000 Месяц рождения студентаМР = 6 День рождения студентаДР = 28 Фирма Microsoft является лидером в разработке компьютерного обеспечения и доминирует на мировом рынке на котором вместе с ней п