68911

Преобразования в пространстве

Лекция

Информатика, кибернетика и программирование

В трехмерном случае (3D) рассмотрим однородные координаты. Поступая аналогично тому, как это было сделано в размерности два, заменим координатную тройку (х, у, z), задающую точку в пространстве, на четверку чисел (х, у, z, 1).

Русский

2014-09-27

54.5 KB

4 чел.

ЛЕКЦИЯ 8

Преобразования в пространстве.

В трехмерном случае (3D) рассмотрим однородные координаты.

Поступая аналогично тому, как это было сделано в размерности два, заменим координатную тройку (х, у, z), задающую точку в пространстве, на четверку чисел (х, у, z, 1).

Каждая точка пространства (кроме начальной точки О) может быть задана четверкой одновременно не равных нулю чисел; эта четверка чисел определена однозначно с точностью до общего множителя.

Предложенный переход к новому способу задания точек дает возможность воспользоваться матричной записью и в более сложных, трехмерных задачах.

Любое аффинное преобразование в трехмерном пространстве может быть представлено в виде суперпозиции вращений, растяжений, отражений и переносов. Поэтому вполне уместно сначала подробно описать матрицы именно этих преобразований (ясно, что в данном случае порядок матриц должен быть равен четырем).

 Матрицы вращения в пространстве.

Матрица вращения вокруг оси  абсцисс на угол phi:

           1       0                0            0

           0   Cos(phi)    Sin(phi)     0

 [Rх]= 0  -Sin(phi)    Cos(phi)    0

           0        0                 0          1

Матрица вращения вокруг оси ординат на  угол phi: 

         Cos(phi)       0           -Sin(phi)    0

             0               1               0             0

 [Ry]=Sin(phi)       0            Cos(phi)    0       

             0               0              0              1

Матрица вращения вокруг оси аппликат на угол phi: 

         Cos(phi)     Sin(phi)     0        0

         -Sin(phi)    Cos(phi)     0       0

 [Ry]=  0                0              1        0    

            0                0              0        1

Матрица растяжения (сжатия):

где а > 0 - коэффициент растяжения (сжатия) вдоль

оси абсцисс;                                                               

b > 0 - коэффициент растяжения (сжатия) вдоль

оси ординат;

c > 0 - коэффициент растяжения (сжатия) вдоль си аппликат.

          a    0    0    0

          0    b    0    0

[D] =  0    0     c    0

          0    0     0    1

Матрицы отражения.

Матрица отражения относительно плоскости ху:

           1    0    0    0

           0    1    0    0

[Mz]=  0    0   -1    0

           0    0    0    1

Матрица отражения относительно плоскости  yz:

           -1    0     0      0

            0    1     0      0

[Mx]=   0    0     1      0

            0    0      0      1

Матрица отражения относительно плоскости zx:

            1    0     0      0

            0   -1     0      0

[My]=   0    0     1      0

            0    0      0      1

Матрица переноса (здесь (l,m,n) - вектор переноса):

            1    0    0   0

            0    1    0   0

[T]=      0    0    1   0

             l    m    n   1

Замечание. Как и в двумерном случае, все выписанные матрицы невырожденны.

Приведем   важный пример построения матрицы сложного преобразования по его геометрическому описанию.

Пример 1. Построить матрицу вращения на угол phi вокруг прямой L, проходящей через точку А(а, b, с) и имеющую направляющий вектор (I, т, п).Можно считать, что направляющий вектор прямой является единичным:

  2          2         2 

 L    +M     + N  =1.

Платоновы тела

Правильными многогранниками (Платоновыми телами) называются такие выпуклые многогранники, все грани которых суть правильные многоугольники и все многогранные углы при вершинах равны между собой.

Существует ровно 5 правильных многогранников (это доказал Евклид): правильный тетраэдр, гексаэдр (куб), октаэдр, додекаэдр и икосаэдр. Их основные характеристики приведены в следующей таблице.

Название многогранника

Число граней - Г

Число ребер - Р

Число вершин - В

Тетраэдр

4

6

4

Гексаэдр

6

12

8

Октаэдр

8

12

6

Додекаэдр

12

30

20

Икосаэдр

20

30

12

Нетрудно заметить, что в каждом из пяти случаев числа Г, Р и В связаны равенством Эйлера

Г + В = Р + 2.

Правильные многогранники обладают многими интересными свойствами. Здесь мы коснемся только тех свойств, которые можно применить для построения этих многогранников.

Для полного описания правильного многогранника вследствие его выпуклости достаточно указать способ отыскания всех его вершин.

Операции построения первых трех Платоновых тел являются особенно простыми.

Куб (гексаэдр) строится совсем несложно.

Используя куб, можно построить тетраэдр и октаэдр.

Для построения тетраэдра достаточно провести скрещивающиеся диагонали противоположных граней куба .

Тем самым вершинами тетраэдра являются любые 4 вершины куба, попарно не смежные ни с одним из его ребер.

Для построения октаэдра воспользуемся следующим свойством двойственности: вершины октаэдра суть центры (тяжести) граней куба

Координаты вершин октаэдра по координатам вершин куба легко вычисляются (каждая координата вершины октаэдра является средним арифметическим одноименных координат четырех вершин содержащей ее грани куба).

Додекаэдр и икосаэдр также можно построить при помощи куба.


 

А также другие работы, которые могут Вас заинтересовать

9119. Раціональна економічна поведінка споживача і виробника 32.38 KB
  Тема уроку Раціональна економічна поведінка споживача і виробника Завдання уроку: визначити зміст виробництва, зміст факторів (ресурсів) виробництва, класифікація потреб та виробничі можливості підприємства . Обладнання: крейда, дошка, робочі зошити...
9120. Українська термінологія в професійному спілкуванні 31.91 KB
  Тема: Українська термінологія в професійному спілкуванні Історія і сучасні проблеми української термінології Сучасна українська термінологія практично не відрізняється від зафіксованої у радянських і теперішніх академічних словниках. Зросійщен...
9122. Автоматизация менеджмента среднего звена предприятий на примере МОТЕЛЯ ВАЛЕНТИНКА 11.64 MB
  Обеспечение работы по эффективному и культурному обслуживанию клиентов, созданию для них комфортных условий. Информирование проживающих в гостинице о предоставляемых дополнительных платных услугах, прием и контроль исполнения заказов
9123. Внешняя политика Владимира Путина 101.5 KB
  Содержание: Введение Краткая биографическая справка Личные качества, характеристики Наследие Признание положения страны в мире Итоги первых полутора лет у штурвала станы Краткое описание внешней и внутренней...
9124. Сложение гармонических колебаний 170.5 KB
  Тема: Сложение гармонических колебаний Сложение гармонических колебаний одного направления и одинаковой частоты, условия усиления и ослабления. Биения. Уравнение биений и его анализ. Сложение взаимно перпендикулярных колеба...
9125. Затухающие и вынужденные колебания 112 KB
  Тема: Затухающие и вынужденные колебания Собственные колебания реальной системы. Дифференциальное уравнение затухающих колебаний. Коэффициент затухания. Решение дифференциального уравнения затухающих колебаний. Амплитуда и ...
9126. Воспитание учащихся в коллективе, семье и социуме 118 KB
  Воспитание учащихся в коллективе, семье и социуме Роль коллектива в развитии личности Понятие коллектив и его признаки 4. Структура детского коллектива, функции коллектива 5. Стадии развития детского коллектива, их характеристика...
9127. Гуманистические воспитательные системы и технологии 124.5 KB
  Гуманистические воспитательные системы и технологии 1. Сущность и структура воспитательной системы школы. Понятие о гуманистической воспитательной системе. 2. Этапы становления воспитательной системы, критерии ее эффективности. 3. Анализ опыта созда...