690

Экспрессия гена. Трансляция

Курсовая

Биология и генетика

Регуляция экспрессии генов на уровне транскрипции у прокариот. Основные положения процесса экспрессии генов. Инициация у эукариот. Некоторые общие особенности процесса трансляции. Аппарат экспрессии генов и его логика.

Русский

2013-01-06

114.5 KB

55 чел.

Министерство образования и науки Российской    Федерации

Федеральное государственное бюджетное

образовательное учреждение высшего профессионального            образования

Пензенский государственный университет

Медицинский институт

Кафедра «биологии»

Курсовая работа по дисциплине «биология»

на тему:

«Экспрессия гена. Трансляция»

 

Подготовил:

ст. гр. 11ЛЛ2

Николашин А.О.

Проверила:

Ст. преп.

Полякова Т.Д.

                                                   Пенза 2011

                                               Содержание

Введение                                                                                                        3

  1.  Экспрессия гена                                                                                        4
    1.  Аппарат экспрессии генов и его логика                                                 4
    2.  Основные положения процесса экспрессии генов                                      5

1.3 Регуляция экспрессии генов на уровне транскрипции у прокариот   11

2. Трансляция                                                                                               12       

2.1 Трансляция и ее общие сведения                                                           12

2.2 Механизм трансляции                                                                             13

2.3 Инициация                                                                                                15

2.3.1 Инициация у прокариот                                                                       16

2.3.2 Инициация у эукариот                                                                         17                       

2.4 Элонгация                                                                                               17

2.5 Терминация                                                                                             19

2.6 Некоторые общие особенности процесса трансляции                           19

Заключение                                                                                                   21

Список используемой литературы                                                              23

       

Введение.

      Конечным результатом экспрессии генов, кодирующих белки или нуклеиновые кислоты, должно быть образование этих полноценных в функциональном отношении макромолекул, сопровождаемое формированием определенного фенотипа организма. В соответствии с основным постулатом молекулярной биологии генетическая информация в процессе ее реализации передается однонаправленно от нуклеиновых кислот к белкам. При этом реализуется следующая обобщенная схема: ДНК ↔ РНК → белок, которая подчеркивает, что в ряде специальных случаев возможна передача генетической информации от РНК к ДНК.

    Синтез РНК происходит в результате сложной последовательности биохимических реакций, называемой транскрипцией.

    Трансляцией называют осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК).

    С этими процессами мы и познакомимся поближе.

 Целями данной работы являются:

  1.  Рассмотреть процесс экспрессии генов
  2.  Рассмотреть процесс трансляции

  1.  Экспрессия гена.

Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль за временем, местом и количественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме.

  1.  Аппарат экспрессии генов и его логика

         В основу концепции взаимосвязи генотипа и фенотипа была положена теория "один ген - один фермент". Однако эта теория не учитывала молекулярную природу носителей генетической информации и способ передачи этой информации от генов к белкам. Не содержала она и никаких предположений о механизме регуляции экспрессии генов. Прогресс в этих областях наметился сразу после того, как были установлены следующие ключевые положения: 1) показано, что гены - это участки ДНК; 2) расшифрована молекулярная структура ДНК; 3) установлено, что структура и функция белков определяются их уникальной аминокислотной последовательностью; 4) обнаружено, что передача информации от ДНК к белкам осуществляется с помощью РНК; 5) разработаны относительно простые бактериальные генетические системы, позволяющие связать мутационные изменения в генах со структурными изменениями в соответствующих белках; 6) разработаны системы для изучения синтеза РНК и сборки белков in vitro.

         ДНК и информационно связанные с ней молекулы РНК и белков можно представить как одномерные структуры, состоящие из множества мономерных единиц. В ДНК информация записана в виде последовательно расположенных дезоксинуклеотидных пар, образующих длинные цепи, а в РНК - в виде последовательности рибонуклеотидов. Уникальность белков определяется линейной последовательностью аминокислот в их полипептидной цепи. Природу информационной связи между ДНК и белками удалось понять, проводя генетические и биохимические исследования мутаций в данном гене и сопоставляя их со специфическими изменениями в аминокислотной последовательности соответствующею белка. Благодаря этим исследованиям была выявлена также коллинеарность последовательностей нуклеотидов в ДНК и аминокислот в белках. Наличие такой корреляции подразумевало существование генетического кода, связывающего нуклеотидные и аминокислотные последовательности обоих полимеров. Но какова природа этого кода? И в частности - как последовательности ДНК, состоящие всего из четырех нуклеотидов, могут детерминировать белковые последовательности, состоящие не менее чем из 20 аминокислот? Какие химические процессы управляют трансляцией генетического кода и как они регулируются при формировании свойственных разным клеткам и организмам фенотипов?

         Сейчас природа генетического кода известна, составлен словарь, переводящий нуклеотидную последовательность в аминокислотную. Установлены и основные особенности различных этапов экспрессии генов и их регуляции, хотя многие молекулярные детали еще ждут своего разъяснения.

  1.  Основные положения процесса экспрессии генов

Экспрессия генов - это процесс реализации информации, закодированной в структуре ДНК, на уровне РНК и белков. Прежде чем переходить к детальному описанию и анализу этих процессов, мы вкратце рассмотрим суть экспрессии генов - ее механизм и регуляцию.

а. Транскрипция ДНК в РНК

Экспрессия всех генов начинается с транскрипции их нуклеотидной последовательности, т.е. перевода ее на язык РНК. При этом определенный участок одной из двух цепей ДНК используется как матрица для синтеза РНК путем комплементарного спаривания оснований. В результате транскрипции генов, в которых закодирована структурная информация о белках, образуются молекулы мРНК; другие гены кодируют молекулы РНК, являющиеся частью аппарата, необходимого для трансляции мРНК с образованием белков. У прокариот, например Е. coli, ДНК транскрибируется с помощью одного фермента – ДНК-зависимой РНК-полимеразы, который участвует в синтезе всех типов РНК. В отличие от прокариот эукариоты имеют три разные ДНК-зависимые РНК-полимеразы, каждая из которых ответственна за транскрипцию генов, кодирующих разные типы клеточных РНК. Несмотря на то, что механизмы синтеза РНК и матричного копирования для всех РНК-полимераз идентичны, каждый фермент узнает в матрице ДНК свои характерные особенности, определяющие сайты инициации, терминации и регуляции транскрипции.

б. Соответствие между нуклеотидными триплетами и аминокислотами

Генетический код устанавливает соответствие между нуклеотидной последовательностью данной мРНК и аминокислотной последовательностью синтезируемой на ней полипептидной цепи. Размер единиц кодирования и сами эти единицы, однозначно задающие ту или иную аминокислоту, практически одинаковы у всех живых организмов. Более того, основные принципы и механизмы перевода генетических посланий также универсальны.

Генетический словарь содержит 64 кодона, каждый из которых образован тремя последовательными нуклеотидами. 61 из 64 кодонов детерминируют 20 аминокислот, обнаруженных в белках, один определяет начало большинства последовательностей, кодирующих белки, и три обозначают окончания этих последовательностей.

Отличительной особенностью генетического кода является то, что каждый кодон кодирует только одну аминокислоту, т.е. код однозначен. Следовательно, зная словарь и правила пользования им, можно перевести нуклеотидную последовательность мРНК в определенную аминокислотную последовательность. Но генетический код является вырожденным. Это означает, что одной аминокислоте могут соответствовать несколько кодонов. Вырожденность генетического кода приводит к тому, что нельзя однозначно перевести аминокислотную последовательность данного белка в нуклеотидную последовательность соответствующей мРНК.

в. Расшифровка кода с помощью тРНК

Аминокислоты не взаимодействуют с соответствующими им кодонами непосредственно. Каждая аминокислота вначале связывается с адаптером – родственной тРНК, и образующаяся при этом аминоацил-тРНК узнает «родственный» кодон путем комплементарного спаривания оснований. Таким образом, декодирование осуществляется с помощью спаривания оснований триплетных кодонов мРНК с триплетными антикодонами в аминоацил-тРНК.

Присоединение аминокислот через карбоксильные группы к родственным тРНК катализируют ферменты, называемые аминоацил-тРНК-синтетазами. При связывании тРНК с аминокислотой карбоксильная группа последней активируется, и в результате образование пептидных связей становится энергетически выгодным. Энергия же, необходимая для активации аминокислоты при присоединении ее к тРНК, поступает от гидролиза АТР.

Присоединение аминокислот к родственным тРНК осуществляется с помощью специфических ферментов. Так, тирозил-тРНК-синтетаза присоединяет L-тирозин только к тем тРНК, которые могут спариться с тирозиновым кодоном. Аналогично лейцил-тРНК-синтетаза катализирует присоединение лейцина к молекулам тРНК, которые узнают кодоны лейцина. Таким образом, специфичность декодирования обеспечивается двумя реакциями: точным присоединением каждой аминокислоты к родственной ей тРНК и комплементарным спариванием антикодонов аминоацил-тРНК с соответствующими им кодонами в мРНК.

г. Правильная инициация трансляции

Имеются три «рамки считывания», при которых может осуществляться перевод последовательных нуклеотидных триплетов мРНК в аминокислоты. Правильная инициация трансляции чрезвычайно важна для точной расшифровки генетического кода. Выбор рамки считывания зависит от того, какое сочетание из трех последовательных нуклеотидов выбрано в качестве первого кодона. Ниже приведены три возможные рамки считывания для последовательности GUACGUAAGUAAGUAUGGACGUA:

Рамка считывания 1 GUA CGU AAG UAA GUA UGG ACG

Рамка считывания 2 G UAC GUA AGU AAG UAU GGA CGU

Рамка считывания 3 GU ACG UAA GUA AGU AUG GAC GUA

Обычно аминокислотной последовательности кодируемой полипептидной цепи соответствует только одна из рамок. Следовательно, должен существовать какой-то способ инициации трансляции с правильной рамкой считывания. У всех организмов, изученных к настоящему времени, – бактерий, вирусов и эукариот – правильная рамка считывания определяется с помощью механизма, распознающего специфический кодон, который детерминирует концевую аминокислоту синтезируемого белка. Почти всегда таким кодоном является триплет AUG, отвечающий метионину. Поэтому образующийся полипептид неизменно содержит на N-конце метионин, но при последующем удалении аминоконцевой последовательности на N-конце конечного белкового продукта оказывается аминокислота, находящаяся изначально внутри синтезированной полипептидной последовательности. В рассмотренном выше примере кодон AUG, с которого может начаться транскрипция, содержит рамка считывания 3.

д. Трансляция кодонов и соединение аминокислот

Последовательное спаривание разных аминоацил-тРНК с кодонами мРНК и рост полипептидной цепи осуществляются с помощью целой серии взаимно согласованных реакций. Одним из главных участников этого в высшей степени скоординированного процесса является рибосома – особый мультиферментный комплекс, состоящий из нескольких видов РНК и множества белков. Кроме того, целая армия ферментов и различных факторов катализирует мириады химических событий, необходимых для успешного синтеза белка.

Рибосомы, несущие особую инициаторную метионил-тРНК, находят инициаторный кодон в мРНК, AUG, и связываются с ним. Затем с рибосомой связывается аминоацил-тРНК, соответствующая второму кодону, и при участии рибосомной ферментативной активности остаток метионина соединяется со второй аминокислотой, все еще связанной со «своей» тРНК. В результате образуется дипептидил-тРНК. По мере продвижения рибосомы по цепи мРНК и считывания каждого последующего кодона полипептидная цепь удлиняется на одну аминокислоту за один шаг. Элонгация прекращается в тот момент, когда рибосома достигает одного из трех терминирующих кодонов. Завершенная полипептидная цепь тотчас же высвобождает последнюю тРНК, и происходит разделение рибосомы и мРНК.

е. Регуляция экспрессии генов на разных этапах образования РНК и белка

Клетки про- и эукариот обладают способностью к дифференциальной регуляции экспрессии генов. Так, при определенных условиях многие гены вообще не экспрессируются, а степень экспрессии других различается на несколько порядков. Изменение условий может привести к активации «молчавших» ранее генов и репрессии активно работавших. Подобная способность позволяет клеткам приспособить свои фенотипы к самым разнообразным условиям окружающей среды и физиологическим воздействиям. Дифференцированная экспрессия одного генома у многоклеточных организмов обусловливает развитие огромного множества типов клеток, имеющих специфические функции, из одной или нескольких зародышевых клеток.

Экспрессия генов, как правило, регулируется на уровне образования РНК. Обычно регулируемым этапом является инициация транскрипции, при этом регуляция осуществляется либо с помощью репрессорных белков, предотвращающих транскрипцию, либо с помощью активаторных, необходимых для ее начала. В первом случае транскрипция начинается только после того, как инактивируется репрессорный белок. Во втором ген транскрибируется лишь тогда, когда белок-активатор находится в соответствующем функциональном состоянии. В регуляции транскрипции генов участвуют не только репрессорные и активаторные белки. В некоторых случаях сами белки – продукты генной экспрессии – оказываются регуляторами транскрипции собственных генов. Эффективность транскрипции зависит также от конформационного состояния ДНК или РНК. Кроме того, регуляция синтеза РНК может осуществляться путем контроля скорости ее элонгации или с помощью «стоп-сигнала» в транскрибируемой последовательности, который может остановить транскрипцию гена. Модификация и / или процессинг, которые могут предшествовать образованию зрелой функциональной РНК, также регулируются.

Экспрессия генов может регулироваться и на уровне трансляции мРНК с образованием белков. И в этом случае специфическая регуляция, как правило, осуществляется на начальном этапе декодирования. Однако контроль может осуществляться и на разных этапах сборки полипептидной цепи. Более того, синтез тех белков, которые претерпевают посттрансляционные модификации или транспортируются к местам своего назначения внутри клетки, может регулироваться на каждом из этих этапов.

  1.   Регуляция экспрессии генов на уровне транскрипции у прокариот

Регуляция транскрипции в клетках осуществляется на уровне индивидуальных генов, их блоков и даже целых хромосом. Возможность управления многими генами, как правило, обеспечивается наличием у них общих регуляторных последовательностей нуклеотидов, с которыми взаимодействуют однотипные факторы транскрипции. В ответ на действие специфических эффекторов такие факторы приобретают способность с высокой точностью связываться с регуляторными последовательностями генов. Следствием этого является ослабление или усиление транскрипции (репрессия или активация) соответствующих генов. Три основных этапа транскрипции – инициация, элонгация и терминация, рассмотренные нами выше, используются бактериальными клетками для регуляции синтеза РНК. То же, по-видимому, характерно и для остальных живых организмов.

  1.  Трансляция.

Рассмотрим общее представление о трансляции, её механизм и то, как она протекает у эукариот и прокариот.

  1.    Трансляция: общие сведения

        Трансляция - процесс синтеза белка в цитоплазме клетки. Молекулярные процессы, лежащие в основе синтеза белка, крайне сложны ( Kornberg R.D. et al, 1981 ; McGhee J.D. et al, 1980 ).

В синтезе белка участвует три таких класса молекул РНК ( мРНК, тРНК и рРНК ). Началом синтеза белка принято считать процесс транскрипции ДНК, в результате которого в ядре должна образоваться соответствующая информационная, или матричная, РНК (мРНК), которая затем должна перейти в цитоплазму клетки.

Процесс трансляции начинается с присоединения малой рибосомной субчастицы к молекуле мРНК. Особая инициаторная тРНК связывает малую рибосомную субчастицу со специальным старт- кодоном на мРНК. Присоединение большой субчастицы завершает сборку рибосомы.

Далее следует фаза элонгации. Каждая очередная аминокислота (находящаяся в комплексе с tРНК) присоединяется к карбоксильному концу растущего полипептида с помощью циклического процесса, состоящего из трех последовательных этапов: связывания аминоацил-тРНК, образования пептидной связи и транслокации рибосомы. Рибосома перемещается вдоль молекулы мРНК в направлении 5'-> 3' от одного кодона к другому до тех пор, пока не будет достигнут какой-либо из трех стоп-кодонов. К этому стоп-кодону присоединяется затем фактор освобождения, останавливающий трансляцию и вызывающий отделение завершенного полипептида от рибосомы. Энергия для биосинтеза белка обеспечивается гидролизом GTP.

Большинство данных о механизмах биосинтеза белка у эукариот было получено с использованием бесклеточных белоксинтезирующих систем. Важные результаты о механизмах трансляции у эукариот были получены с использованием стабильно трансформированных клеток животных и растений, выращиваемых в культуре. Установлено, что у растений и животных в основном функционируют одни и те же механизмы трансляции.

Клетки животных, кроме основной системы трансляции, локализованной в цитоплазме, имеют дополнительную систему трансляции митохондрий, которая по ряду свойств приближается к бактериальной. Клетки растений обладают дополнительной системой биосинтеза белка, функционирующей в хлоропластах.

  1.   Механизм трансляции.

        Синтез белка является основой жизнедеятельности клетки. Для осуществления этого процесса в клетках всех без исключения организмов имеются специальные органеллы — рибосомы. Рибосомы представляют собой рибонуклеопротеидные комплексы, построенные из 2 субъединиц: большой и малой. Функция рибосом заключается в узнавании трёхбуквенных (трехнуклеотидных) кодонов мРНК, сопоставлении им соответствующих антикодонов тРНК, несущих аминокислоты, и присоединении этих аминокислот к растущей белковой цепи. Двигаясь вдоль молекулы мРНК, рибосома синтезирует белок в соответствии с информацией, заложенной в молекуле мРНК.

Для узнавания аминокислот в клетке имеются специальные «адаптеры», молекулы транспортной РНК (тРНК). Эти молекулы, имеющие форму клеверного листа, имеют участок (антикодон), комплементарный кодону мРНК, а также другой участок, к которому присоединяется аминокислота, соответствующая этому кодону. Присоединение аминокислот к тРНК осуществляется в энерго-зависимой реакции ферментами аминоацил-тРНК-синтетазами, а получившаяся молекула называется аминоацил-тРНК. Таким образом, специфичность трансляции определяется взаимодействием между кодоном мРНК и антикодоном тРНК, а также специфичностью аминоацил-тРНК-синтетаз, присоединяющих аминокислоты строго к соответствующим им тРНК (например, кодону GGU будет соответствовать тРНК, содержащая антикодон ACC, а к этой тРНК будет присоединяться только аминокислота глицин).

Механизмы трансляции прокариот и эукариот существенно отличаются, поэтому многие вещества, подавляющие прокариотическую трансляцию, в значительно меньшей степени действуют на трансляцию высших организмов, что позволяет использовать их в медицинской практике как антибактериальные средства безопасные для организма млекопитающих.

Процесс трансляции разделяют на:

инициацию — узнавание рибосомой стартового кодона и начало синтеза.

элонгацию — собственно синтез белка.

терминацию — узнавание терминирующего кодона (стоп-кодона) и отделение продукта.

Поскольку каждый кодон содержит три нуклеотида, один и тот же генети-ческий текст можно прочитать тремя разными способами (начиная с первого, второго и третьего нуклеотидов), то есть в трех разных рамках считывания. За некоторыми интересными исключениями, значимой является информация, закодированная только в одной рамке считывания. По этой причине крайне важным для синтеза белка рибосомой является её правильное позиционирование на стартовом AUG-кодоне — инициация трансляции.

  1.  Инициация

Синтез белка в большинстве случаев начинается с AUG-кодона, кодирую-щего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации трансляции необ-ходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона. Немаловажная роль в защите 5'-конца мРНК принадлежит 5'-кэпу. Существование последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах.

Процесс инициации обеспечивается специальными белками — факторами инициации (англ. initiation factors, сокращённо IF; эукариотические инициаторные факторы обозначают eIF, от англ. eukaryotes).

Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны находить стартовый AUG и инициировать синтез на любых участках мРНК, в то время как эукариотические рибосомы обычно присоединяются к мРНК в области кэпа и сканируют её в поисках стартового кодона.

Во время инициации аппарат трансляции решает следующие задачи:

1) диссоциация и антиассоциация рибосомных субъединиц;

2) выбор инициаторной метионил-тРНК (Met-tRNAiMet);

3) связывание 5'-кэпа, связывание поли(А), сканирование;

4) выбор правильного старт-кодона;

5) объединение рибосомных субъединиц на старт-кодоне

  1.  Инициация у прокариот

Малая рибосомная субъединица (30S) прокариот, если она не вовлечена в данный момент в трансляцию, существует в комплексе с инициаторными факто-рами IF1, IF3, и, в некоторых случаях, IF2. Рассмотрим основные функции этих белков:

IF3, связанный с 30S-субъединицей, предотвращает ассоциацию с большой (50S) субъединицей рибосомы, тем самым сохраняя ее свободное состояние до связывания с матричной РНК. Этот белок также принимает участие в связывании мРНК и тРНК, а также IF2.

IF2 взаимодействует с тРНК, а также обладает способностью расщеплять ГТФ.

IF1 является, по-видимому, не обязательным фактором (у некоторых видов он отсутствует) повышающим сродство малой субчастицы к IF2 и IF3.

Комплекс 30S субчастицы с инициаторными факторами способен узнавать специальные последовательности мРНК, так называемые участки связывания рибосомы (англ. RBS — ribosomt-binding site). Эти участки содержат, во-первых, инициаторный AUG, и, во-вторых, специальную последовательность Шайна-Дальгарно с которой комплементарно связывается рибосомная 16S РНК. Последовательность Шайн-Дальгарно служит для того, чтобы отличать инициаторный AUG от внутренних кодонов, кодирующих метионин. После того, как 30S-субъединица связалась с мРНК к ней привлекается инициаторная аминоацил-тРНК и IF2, если они еще не были включены в комплекс. Затем присоединяется 50S-субчастица, происходит гидролиз ГТФ и диссоциация инициаторных факторов. Собранная рибосома начинает синтезировать полипептидную цепь.

  1.   Инициация у эукариот.

У эукариот существуют два механизма нахождения рибосомой стартового AUG: кэп-зависимый (сканирующий) и кэп-независимый (внутренняя инициация).

При сканирующем механизме рибосома (точнее, её малая субъединица) садится на 5'-конец мРНК в области кэпа и двигается вдоль молекулы мРНК, «сканируя» один кодон за другим, пока не наткнётся на инициаторный AUG. Для привлечения рибосомы к 5'-концу мРНК требуется специальная структура, кэп — 7-метилгуанин, прикреплённый к 5'-концевому нуклеотиду мРНК.

При механизме внутренней инициации, называемом у эукариот также IRES-зависимым механизмом, рибосома садится на внутренний участок мРНК, называемый IRES (от англ. Internal Ribosomal Entry Site, участок внутренней посадки рибосомы) — участок мРНК, обладающий выраженной вторичной структурой, позволяющей ему направлять рибосомы на стартовый AUG. По IRES-зависимому механизму инициируется синтез лишь на небольшой части клеточных мРНК, а также на РНК некоторых вирусов.

Также у эукариот возможна реинициация трансляции, когда после окончания трансляции рибосома с белковыми факторами не диссоциирует от мРНК, а перескакивает с 3' на 5' конец мРНК и начинает инициацию ещё раз. Такое возможно благодаря замкнутой кольцевой форме мРНК в цитоплазме.

  1.   Элонгация.

В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu — у прокариот) переносит аминоцилированную (заряженную аминокислотой) тРНК в А (аминоацил)-сайт рибосомы. Рибосома катализирует образование пептидной связи, происходит перенос растущей цепи пептида с Р-сайтовой тРНК на находящуюся в А-сайте, пептид удлиняется на один аминокислотный остаток. Затем второй белок (EF2 у эукариот, EF-G — у прокариот) катализирует так называемую транслокацию. Транслокация — перемещение рибосомы по мРНК на один триплет, в результате которого пептидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК из P-сайта переходит в Е-сайт (от слова exit). Цикл элонгации завершается, когда новая тРНК с нужным антикодоном приходит в A-сайт.

Эукариотические клетки содержат в большом количестве фактор элонгации eEF1A , который является функциональным гомологом бактериального фактора EF-Tu . Так же как и у бактерий, этот фактор образует тройной комплекс с GTP и аминоацил-тРНК, обеспечивая вхождение последней в А-участок элонгирующей рибосомы.

Два других эукариотических фактора eEF1B и eEF2 резко отличаются от бактериальных функциональных аналогов EF1B(EF-Ts) и EF2(EF-G) по аминокислотным последовательностям. Гетеротримерный фактор eEF1B, как и его бактериальный аналог, катализирует обмен GDP на GTP в комплексе eEF1A-GDP. Фактор eEF2, по аналогии с бактериальными системами, обеспечивает транслокацию пептидил-тРНК в P-участок рибосом и перенос деацилированной тРНК в E-участок . У высших организмов этот фактор служит мишенью регуляторных воздействий через фосфорилирование.

Замечательным свойством факторов eEF1A и eEF2 является способность связываться с компонентами цитоскелета эукариотических клеток. Полагают, что это их свойство может обеспечивать один из механизмов внутриклеточного транспорта мРНК, направляющих ее в полисомы .

  1.   Терминация.

Терминация — окончание синтеза белка, осуществляется, когда в А-сайте рибосомы оказывается один из стоп- кодонов — UAG, UAA, UGA. Из-за отсутствия тРНК , соответствующих этим кодонам, пептидил-тРНК остаётся связанной с Р-сайтом рибосомы. Здесь в действие вступают специфические белки RF1 или RF2, которые катализируют отсоединение полипептидной цепи от мРНК, а также RF3, который вызывает диссоциацию мРНК из рибосомы. RF1 узнаёт в А-участке UAA или UAG; RF-2 — UAA или UGA. С UAA терминация эффективнее, чем с другими стоп-кодонами.

В эукариотических белоксинтезирующих системах терминация трансляции, как и у бактерий, контролируется специфическими рилизинг-факторами. Однако у эукариот эти факторы менее разнообразны. В частности, у них отсутствует функциональный аналог бактериального фактора RRF/RF4.

Факторы терминации. По современным представлениям, элонгирующая эукариотическая рибосома распознает стоп-кодоны, находящиеся в одной рамке с основными ОРС, после взаимодействия с гетеродимерным комплексом рилизинг-факторов (RF), в состав которого входят факторы eRF1 и eRF3. Фактор eRF1 необходим для распознавания всех трех терминирующих кодонов (UAA, UAG и UGA) и освобождения синтезированного полипептида. Фактор eRF3 является GTPазой, обладающей гомологией с eEF1A, которая, гидролизуя GTP, стимулирует терминацию независимо от последовательности нуклеотидов в терминирующих кодонах.

2.6.  Некоторые общие особенности процесса трансляции

а. Одновременная трансляция молекулы мРНК более чем одной рибосомой

б. Трансляция бактериальных мРНК может осуществляться параллельно транскрипции

в. Рибосомы начинают новый раунд после трансляции кодирующей последовательности

г. Взаимодействие кодона и антикодона

Трансляция крайне важный процесс, и нарушение или выпадение любого звена, участвующего в синтезе белка, почти всегда приводит к развитию патологии, причем клинические проявления болезни будут определяться природой и функцией белка, синтез которого оказывается нарушенным (структурный или функциональный белок). Иногда синтезируются так называемые аномальные белки как результат действия мутагенных факторов и, соответственно, изменения генетического кода (например, гемоглобин при серповидно-клеточной анемии). Последствия этих нарушений могут выражаться в развитии самых разнообразных синдромов или заканчиваться летально. Следует отметить, что организм располагает мощными механизмами защиты: подобные изменения генетического аппарата быстро распознаются специфическими ферментами — рестриктазами, измененные последовательности вырезаются и вновь замещаются соответствующими нуклеотидами при участии полимераз и лигаз.

           Заключение.

Рассматривая вопрос о трансляции, необходимо отметить, что во время элонгации полипептидных цепей в процессе трансляции не все участки мРНК транслируются с одинаковой скоростью. Рибосомы в процессе трансляции мРНК могут задерживаться на кодонах, соответствующих минорным изоакцепторным тРНК, присутствующим в клетке. В этом случае внутриклеточная концентрация изоакцепторных тРНК лимитирует весь процесс трансляции.

Кодоны, соответствующие минорным изоакцепторным тРНК, А.С. Спирин предлагает называть модулирующими, поскольку они могут изме-нять скорость трансляции соответствующих мРНК. Чем больше модулирующих кодонов в мРНК, тем медленнее она транслируется. Клетка может изменять эффективность трансляции определенных мРНК путем адаптации внутриклеточных концентраций изоакцепторных тРНК к числу модулирующих кодонов этих мРНК. Показано, что во время интенсивного синтеза фиброина в шелкоотделительных железах тутового шелкопряда внутриклеточный спектр изоакцепторных тРНК сильно меняется и становится идеально соответствующим потребностям белоксинтезирующего аппарата клеток, осуществляющего трансляцию мРНК фиброина.

Другим фактором, от которого зависит изменение скорости перемещения рибосомы вдоль транслируемой молекулы мРНК, является пространственная структура матрицы. Для разворачивания индивидуальных участков пространственной структуры мРНК, обладающих неодинаковой стабильностью, требуется разное время, что отражается в различной скорости трансляции рибосомами индивидуальных мРНК.

Обнаружен ряд регуляторных белков, которые после взаимодействия с транслирующей рибосомой избирательно задерживают трансляцию в определенных местах мРНК. Например, у эукариот рибонуклеопротеидная частица, содержащая 7S-РНК, которая узнает особую N-концевую гидрофобную аминокислотную последовательность растущего полипептида, присоединяется к рибосомам и блокирует трансляцию до тех пор, пока рибосома не вступит во взаимодействие с мембраной эндоплазматического ретикулума.

Регуляция экспрессии генов на уровне элонгации трансляции широко распространена в природе. Во время многих вирусных инфекций скорость элонгации полипептидов зараженных клеток резко снижается. Это обнаружено у пикорнавирусов и вирусов осповакцины. Факторы элонгации трансляции могут быть мишенями различных регуляторных воздействий.

Список литературы.

  1.  Биологическая энциклопедия. /Составитель С.Т. Исмаилова. — М.: Аванта+, 2006.
  2.  Биологический энциклопедический словарь. — М.: Советская энциклопедия, 2003
  3.  Патрушев Л.И. Экспрессия генов. – М.: Наука, 2000. – 800 с., ил.
  4.  Мамонтов С.Г. Биология – М., 2004


 

А также другие работы, которые могут Вас заинтересовать

33529. Литературный процесс 30-х годов (ведущие темы, основные имена) 13.59 KB
  Печатались новые произведения Н. Новые сферы жизни человека новые конфликты новые характеры видоизменение традиционного литературного материала привели к появлению новых героев к возникновению новых жанров новых приемов стихосложения к поискам в области композиции и языка.
33530. Литературные объединения 20-х годов, их роль в развитии литературы 25.13 KB
  в литературной жизни продолжали существовать литературные организации и группы писателей: футуристы акмеисты Пролеткульт сложившиеся в начале 1910х годов. Одной из самых многочисленных и авторитетных литературных организаций объединивших пролетарских поэтов и писателей стал Пролеткульт. Его теория пролетарской культуры оказала большое влияние на русскую литературу 1920 1930х годов особенно на творчество пролетарских поэтов и писателей. Драматическим моментом в судьбе Пролеткульта стал раскол который произошел накануне Первого...
33531. Несвоевременные мысли» М.Горького как опыт национальной самокритики 20.06 KB
  Советское литературоведение отталкиваясь от определения Ленина Горький не политик толковало публицистику как отступление от правды большевизма. Это хорошо понимал и сам Горький. Горький подозревает крестьянство в тяжких грехах и противопоставляет ему рабочий класс напутствуя: Не забывайте что вы живете в стране где 85 населения – крестьяне и что вы среди них маленький островок среди океана. На крестьянство Горький не рассчитывает потому что оно жадное до собственности получит землю и отвернется изорвав на онучи знамя Желябова.
33532. Тема любви в лирике В.Маяковского и лирике С.Есенина 20-х гг. 21.61 KB
  Октябрьская революция раскрепостив человека создала условия для торжества любви любви как счастья как радости. Это произведение о человеческой любви во всех ее проявлениях о любви в самом широком смысле этого слова. Утверждая право человека ненавидеть во имя любви Маяковский по ходу эволюции своего лирического героя показывает как его чувства становятся социально осмысленными.
33533. Отражение истории в судьбе Г.Мелехова (по роману М.Шолохова «Тихий Дон») 14.64 KB
  Григорий Мелехов – это главный герой романа. На войне герой возмужал заслужил четыре георгиевских креста и четыре медали стал офицером поддержал казачью честь и славу но стал злым. После знакомства с большевистской философией герой чувствует себя зрячим. Трех коней убили под Григорием в пяти местах продырявлена его шинель но геройство оказывается напрасным – поток Красной армии затопляет Донскую землю.
33534. Проблематика и жанровые особенности романа М.Шолохова «Тихий Дон» 16.39 KB
  Действительно Шолохов в отличие от автора “Войны и мира†не дает в романе теоретического обоснования своей исторической концепции несмотря на то что его трактовка исторических событий нередко отличается от главенствовавшей тогда в исторической науке. В своем романе Шолохов рисует жизнь русского донского казачества. В этом романе Шолохов освещает проблемы связанные с войной и революцией начала 20 века. Но есть в романе и другое.
33535. Политическая лирика В.Маяковского 18.44 KB
  Февральская и Октябрьская революции явились для Маяковского началом реального воплощения его идей о новом свободном человеке и счастливом мироустройстве. Отныне романтический индивидуализм присущий лирическому герою Маяковского уступил место соборности единению с миллионами я сменилось на мы конфликт личности и общества был снят самой историей. Футуристическая эстетика Маяковского сменилась доктриной коммунистического футуризма и Левого фронта искусств с его идеями искусства как жизнестроения. Знаменитые Окна РОСТА регулярно...
33536. Идейно-тематические особенности рассказов М.Зощенко. Герои, конфликты 15.7 KB
  Несмотря на то что герой не считает себя удачливым в жизни так как выходит ему время от времени перетык и прискорбный случай он философствует Жизнь штука не простая а сложная имеет на все свои взгляды: и на мужицкую жизнь блекота и слабое развитие техники и на культуру иностранную которую он знает. Я всегда стремился к изображению положительных сторон жизни. которые проповедовали свободу искусства от политики изображали действительность исходя из фактов жизни быта. Главным фактом в то время была революция которую...
33537. Повесть В.Распутина «Прощание с Матерой» как итоговое произведение «деревенской» прозы 17.11 KB
  Жанр повести можно определить как философскую притчу. Таким образом один из основных философских смыслов повести заключается в том что не нами начинается жизнь на земле и не нашим уходом заканчивается. В повести двадцать две главы в которых воспроизводится быт жителей Матеры в последние три месяца их пребывания на острове. Трагическая развязка повести проявляет авторскую позицию.